1. bookVolume 55 (2021): Issue 2 (April 2021)
Journal Details
License
Format
Journal
eISSN
1336-0329
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Open Access

Thyroid hormone and thyroid hormone nuclear receptors: History and present state of art

Published Online: 21 May 2021
Volume & Issue: Volume 55 (2021) - Issue 2 (April 2021)
Page range: 103 - 119
Journal Details
License
Format
Journal
eISSN
1336-0329
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

The present review traces the road leading to discovery of L-thyroxine, thyroid hormone (3,5,3´-triiodo-L-thyronine, T3) and its cognate nuclear receptors. Thyroid hormone is a pleio-tropic regulator of growth, differentiation, and tissue homeostasis in higher organisms. The major site of the thyroid hormone action is predominantly a cell nucleus. T3 specific binding sites in the cell nuclei have opened a new era in the field of the thyroid hormone receptors (TRs) discovery. T3 actions are mediated by high affinity nuclear TRs, TRalpha and TRbeta, which function as T3-activated transcription factors playing an essential role as transcription-modulating proteins affecting the transcriptional responses in target genes. Discovery and characterization of nuclear retinoid X receptors (RXRs), which form with TRs a heterodimer RXR/TR, positioned RXRs at the epicenter of molecular endocrinology. Transcriptional control via nuclear RXR/TR heterodimer represents a direct action of thyroid hormone. T3 plays a crucial role in the development of brain, it exerts significant effects on the cardiovascular system, skeletal muscle contractile function, bone development and growth, both female and male reproductive systems, and skin. It plays an important role in maintaining the hepatic, kidney and intestine homeostasis and in pancreas, it stimulates the beta-cell proliferation and survival. The TRs cross-talk with other signaling pathways intensifies the T3 action at cellular level. The role of thyroid hormone in human cancers, acting via its cognate nuclear receptors, has not been fully elucidated yet. This review is aimed to describe the history of T3 receptors, starting from discovery of T3 binding sites in the cell nuclei to revelation of T3 receptors as T3-inducible transcription factors in relation to T3 action at cellular level. It also focuses on milestones of investigation, comprising RXR/TR dimerization, cross-talk between T3 receptors, and other regulatory pathways within the cell and mainly on genomic action of T3. This review also focuses on novel directions of investigation on relationships between T3 receptors and cancer. Based on the update of available literature and the author’s experimental experience, it is devoted to clinicians and medical students.

Keywords

Anguiano B, Rojas-Huidobro R, Delgado G, Aceves C. Has the mammary gland a protective mechanism against overexposure to triiodothyronine during the peripartum period? The prolactin pulse down-regulates mam-mary type I deiodinase responsiveness to norepinephrine. J Endocrinol 183, 267–277, 2004.10.1677/joe.1.05711 Search in Google Scholar

Antonini D, Sibilio A, Dentice M, Missero C. An intimate relationship between thyroid hormone and skin: regulation of gene expression. Front Endocrinol (Lausanne) 4, 104, 2013.10.3389/fendo.2013.00104 Search in Google Scholar

Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev 81, 1269–1304, 2001.10.1152/physrev.2001.81.3.1269 Search in Google Scholar

Aranda A, Martinez-Iglesias O, Ruiz-Llorente L, Garcia-Carpizo V, Zambrano A. Thyroid receptor: roles in cancer. Trends Endocrinol Metab 20, 318–324, 2009.10.1016/j.tem.2009.03.011 Search in Google Scholar

Aranda A, Alonso-Merino E, Zambrano A. Receptors of thyroid hormones. Pediatr Endocrinol Rev 11, 2–13, 2013. Search in Google Scholar

Aranda A. MicroRNAs and thyroid hormone action. Mol Cell Endocrinol 525, 111175, 2021.10.1016/j.mce.2021.111175 Search in Google Scholar

Bahouth SW. Thyroid hormones transcriptionally regulate the beta 1-adrenergic receptor gene in cultured ventricular myocytes. J Biol Chem 266, 15863–15869, 1991.10.1016/S0021-9258(18)98488-7 Search in Google Scholar

Baker ME, Vaughn DA, Fanestil DD. Inhibition by protease inhibitors of binding of adrenal and sex steroid hormones. J Supramol Struct 9, 421–426, 1978.10.1002/jss.40009031285807 Search in Google Scholar

Barettino D, Vivanco Ruiz MM, Stunnenberg HG. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J 13, 3039–3049, 1994.10.1002/j.1460-2075.1994.tb06603.x3951948039499 Search in Google Scholar

Barsano CP, Iqbal Z, Pullen GL, Munoz BE, Singh SP. Tissue-specific differences in the compartmentalization of rat nuclear triiodothyronine receptors. Acta Endocrinol (Copenh) 122, 181–190, 1990.10.1530/acta.0.12201812316309 Search in Google Scholar

Basu G, Mohapatra A. Interactions between thyroid disorders and kidney disease. Indian J Endocrinol Metab 2, 204–213, 2012.10.4103/2230-8210.93737331373722470856 Search in Google Scholar

Beber EH, Capelo LP, Fonseca TL, Costa CC, Lotfi CF, Scanlan TS, Gouveia CH. The thyroid hormone receptor (TR) beta-selective agonist GC-1 inhibits proliferation but induces differentiation and TR beta mRNA expression in mouse and rat osteoblast-like cells. Calcif Tissue Int 84, 324–333, 2009.10.1007/s00223-009-9230-1 Search in Google Scholar

Benbrook D, Pfahl M. A novel thyroid hormone receptor encoded by a cDNA clone from a human testis library. Science 238(4828), 788–791, 1987.10.1126/science.3672126 Search in Google Scholar

Bernal J, Nunez J. Thyroid hormones and brain development. Eur J Endocrinol 133, 390–398, 1995.10.1530/eje.0.1330390 Search in Google Scholar

Bernal J. Action of thyroid hormone in brain. J Endocrinol Invest 25, 268–288, 2002.10.1007/BF03344003 Search in Google Scholar

Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3, 249–259, 2007.10.1038/ncpendmet0424 Search in Google Scholar

Berry MJ, Kates AL, Larsen PR. Thyroid hormone regulates type I deiodinase messenger RNA in rat liver. Mol Endocrinol 4, 743–748, 1990.10.1210/mend-4-5-743 Search in Google Scholar

Bloise FF, Cordeiro A, Ortiga-Carvalho TM. Role of thyroid hormone in skeletal muscle physiology. J Endocrinol 236, R57–R68, 2018.10.1530/JOE-16-0611 Search in Google Scholar

Brent GA, Larsen PR, Harney JW, Koenig RJ, Moore DD. Functional characterization of the rat growth hormone promoter elements required for induction by thyroid hormone with and without a co-transfected beta type thyroid hormone receptor. J Biol Chem 264, 178–182, 1989.10.1016/S0021-9258(17)31240-1 Search in Google Scholar

Brtko J, Knopp J, DeGroot LJ. Physiochemical factors influencing the stability of solubilized liver nuclear receptor-3,5,3’-triiodothyronine complex in vitro. Endocrinol Exp 21, 251–256, 1987. Search in Google Scholar

Brtko J, Knopp J. Binding parameters of rat liver nuclear receptors for T3 after partial hepatectomy or bilateral adrenalectomy and serum T4 and T3 levels. Endocr Exper 22, 211–220, 1988. Search in Google Scholar

Brtko J, Ichikawa K, DeGroot LJ. Rat liver nuclear receptors for thyroid hormone: Binding characteristics after stabilization and storage. Folia Biologica (Praha) 39, 69–77, 1992a. Search in Google Scholar

Brtko J, Filipcik P, Knopp J, Sedlakova V, Rauova L. Thyroid hormone responsiveness of the L1210 murine leukemia cell line. Acta Endocrinol (Copenh) 126, 374–377, 1992b.10.1530/acta.0.1260374 Search in Google Scholar

Brtko J, Knopp J, Baker ME. Inhibition of 3,5,3’-triiodothyronine binding to its receptor in rat liver by protease inhibitors and substrates. Mol Cell Endocrinol 93, 81–86, 1993.10.1016/0303-7207(93)90142-7 Search in Google Scholar

Brtko J, Pascual A, Aranda A. 3,5,3’-tiiodothyronine nuclear receptors and their role in the thyroid hormone action. Endocr Exper 28, 707–115,1994. Search in Google Scholar

Brtko J, Bobalova J, Podoba J, Schmutzler C, Kohrle J. Thyroid hormone receptors and type I iodothyronine 5’-deiodinase activity of human thyroid toxic adenomas and benign cold nodules. Exp Clin Endocrinol Diabetes 110, 166–170, 2002.10.1055/s-2002-3214712058339 Search in Google Scholar

Brtko J, Dvorak Z. Role of retinoids, rexinoids and thyroid hormone in the expression of cytochrome p450 enzymes. Curr Drug Metab 12, 71–88, 2011.10.2174/13892001179501688121401514 Search in Google Scholar

Brtko J, Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie 179, 157–168, 2020.10.1016/j.biochi.2020.09.02733011201 Search in Google Scholar

Campbell MC, Anderson GW, Mariash CN. Human spot 14 glucose and thyroid hormone response: characterization and thyroid hormone response element identification. Endocrinology 144, 5242–5248, 2003.10.1210/en.2002-000812960053 Search in Google Scholar

Castillo AI, Sanchez-Martinez R, Moreno JL, Martinez-Iglesias OA, Palacios D, Aranda A. A permissive retinoid X receptor/thyroid hormone receptor heterodimer allows stimulation of prolactin gene transcription by thyroid hormone and 9-cis-retinoic acid. Mol Cell Biol 24, 502–513, 2004.10.1128/MCB.24.2.502-513.200434379214701725 Search in Google Scholar

Chan S, Kilby MD. Thyroid hormone and central nervous system development. J Endocrinol 165, 1–8, 2000.10.1677/joe.0.165000110750030 Search in Google Scholar

Chatterjee VK. Resistance to thyroid hormone. Horm Res 48 Suppl 4, 43–46, 1997.10.1159/0001913129350446 Search in Google Scholar

Choksi NY, Jahnke GD, St Hilaire C, Shelby M. Role of thyroid hormones in human and laboratory animal reproductive health. Birth Defects Res B Dev Reprod Toxicol 68, 479–491, 2003.10.1002/bdrb.1004514745982 Search in Google Scholar

Chou WY, Cheng YS, Ho CL, Liu ST, Liu PY, Kuo CC, Chang HP, Chen YH, Chang GG, Huang SM. Human spot 14 protein interacts physically and functionally with the thyroid receptor. Biochem Biophys Res Commun 357, 133–138, 2007.10.1016/j.bbrc.2007.03.10317418816 Search in Google Scholar

Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10, 51–57, 2010.10.1038/nrc2772367296520029423 Search in Google Scholar

Contreras-Jurado C, Garcia-Serrano L, Gomez-Ferreria M, Costa C, Paramio JM, Aranda A. The thyroid hormone receptors as modulators of skin proliferation and inflammation, J Biol Chem 286, 24079–24088, 2011.10.1074/jbc.M111.218487 Search in Google Scholar

Cunningham BA, Moncur JT, Huntington JT, Kinlaw WB. “Spot 14” protein: a metabolic integrator in normal and neoplastic cells. Thyroid 8, 815–825, 1998.10.1089/thy.1998.8.815 Search in Google Scholar

Dahlman-Wright K, Grandien K, Nilsson S, Gustafsson JA, Carlstedt-Duke J. Protein-protein interactions between the DNA-binding domains of nuclear receptors: influence on DNA-binding. J Steroid Biochem Mol Biol 45, 239–250, 1993.10.1016/0960-0760(93)90338-W Search in Google Scholar

DeGroot LJ, Torresani J. Triiodothyronine binding to isolated liver cell nuclei. Endocrinology 96, 357–359, 1975.10.1210/endo-96-2-357 Search in Google Scholar

DeGroot LJ, Coleoni AH, Rue PA, Seo H, Martino E, Refetoff S. Reduced nuclear triiodothyronine receptors in starvation-induced hypothyroidism. Biochem Biophys Res Commun 79, 173–178, 1977a.10.1016/0006-291X(77)90076-6 Search in Google Scholar

DeGroot LJ, Rue P, Robertson M, Bernal J, Scherberg N. Triiodothyronine stimulates nuclear RNA synthesis. Endocrinology 101, 1690–1700, 1977b.10.1210/endo-101-6-1690 Search in Google Scholar

Desouza LA, Ladiwala U, Daniel SM, Agashe S, Vaidya RA, Vaidya VA. Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cell Neurosci 29, 414–426, 2005.10.1016/j.mcn.2005.03.010 Search in Google Scholar

Dillmann WH, Schwartz HL, Oppenheimer JH. Selective alternation in hepatic enzyme response after reduction of nuclear triiodothyronine receptor sites by partial hepatectomy and starvation. Biochem Biophys Res Commun 80, 259–266, 1978.10.1016/0006-291X(78)91131-2 Search in Google Scholar

Dillmann WH. Cellular action of thyroid hormone on the heart. Thyroid 12, 447–452, 2002.10.1089/10507250276014380912165105 Search in Google Scholar

Dillmann WH. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail Rev 15, 125–132, 2010.10.1007/s10741-008-9125-7282069519125327 Search in Google Scholar

Eberhardt NL, Valcana T, Timiras PS. Triiodothyronine nuclear receptors: An in vitro comparison of the binding of triiodothyronine to nuclei of adult rat liver, cerebral hemisphere and anterior pituitary. Endocrinology 102, 556–561, 1978.10.1210/endo-102-2-55633795 Search in Google Scholar

Evans RW, Farwell AP, Braverman LE. Nuclear thyroid hormone receptor in the rat uterus. Endocrinology 113, 1459–1463, 1983.10.1210/endo-113-4-14596311523 Search in Google Scholar

Evans RM. The steroid and thyroid hormone receptor superfamily. Science 240, 889–895, 1988.10.1126/science.328393961598813283939 Search in Google Scholar

Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR & the Big Bang. Cell 157, 255–266, 2014.10.1016/j.cell.2014.03.012402951524679540 Search in Google Scholar

Favre-Young H, Dif F, Roussille F, Demeneix BA, Kelly PA, Edery M, de Luze A. Cross-talk between signal transducer and activator of transcription (Stat5) and thyroid hormone receptor-beta 1 (TRbeta1) signaling pathways. Mol Endocrinol 14, 1411–1424, 2000.10.1210/mend.14.9.052510976919 Search in Google Scholar

Filipcik P, Brtko J, Rauova L, Sedlakova V. Distribution of triiodothyronine nuclear receptors during the cell cycle in mouse leukemia cells. Folia Biol (Praha) 38, 332–339, 1992. Search in Google Scholar

Filipcik P, Strbak V, Brtko J. Thyroid hormone receptor occupancy and biological effects of 3,5,3,-L-triiodothyronine (T3) in GH4C1 rat pituitary tumour cells. Physiol Res 47, 41–46, 1998. Search in Google Scholar

Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS, Vennstrom B, Samarut J. International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: Thyroid hormone receptors. Pharmacol Rev 58, 705–711, 2006.10.1124/pr.58.4.317132849 Search in Google Scholar

Flamant F. Futures challenges in thyroid hormone signaling research. Front Endocrinol (Lausanne) 7, 58, 2016.10.3389/fendo.2016.00058491673527445973 Search in Google Scholar

Flores-Morales A, Gullberg H, Fernandez L, Stahlberg N, Lee NH, Vennstrom B, Norstedt G. Patterns of liver gene expression governed by TRbeta. Mol Endocrinol 16, 1257–1268, 2002.10.1210/mend.16.6.084612040013 Search in Google Scholar

Font-Diaz J, Jimenez-Panizo A, Caelles C, Vivanco MD, Perez P, Aranda A, Estebanez-Perpina E, Castrillo A, Ricote M, Valledor AF. Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development. Semin Cancer Biol S1044-579X(20)30267–4, 2020. Epub ahead of print. Search in Google Scholar

Frau C, Godart M, Plateroti M. Thyroid hormone regulation of intestinal epithelial stem cell biology. Mol Cell Endocrinol 459, 90–97, 2017.10.1016/j.mce.2017.03.00228288904 Search in Google Scholar

Freitas FR, Capelo LP, O’Shea PJ, Jorgetti V, Moriscot AS, Scanlan TS, Williams GR, Zorn TM, Gouveia CH. The thyroid hormone receptor beta-specific agonist GC-1 selectively affects the bone development of hypothyroid rats. J Bone Miner Res 20, 294–304, 2005.10.1359/JBMR.04111615647824 Search in Google Scholar

Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 58, 760–772, 2006a.10.1124/pr.58.4.7 Search in Google Scholar

Germain P, Staels B, Dacquet C, Spedding M, Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol. Rev 58, 685–704, 2006b.10.1124/pr.58.4.2 Search in Google Scholar

Giammanco M, Di Liegro CM, Schiera G, Di Liegro I. Genomic and non-genomic mechanisms of action of thyroid hormones and their catabolite 3,5-diiodo-L-thyronine in mammals. Int J Mol Sci 21, 4140, 2020.10.3390/ijms21114140 Search in Google Scholar

Gick GG, Ismail-Beigi F, Edelman IS. Thyroidal regulation of rat renal and hepatic Na,K-ATPase gene expression. J Biol Chem 263, 16610–16618, 1988.10.1016/S0021-9258(18)37434-9 Search in Google Scholar

Gick GG, Ismail-Beigi F. Thyroid hormone induction of Na(+)-K(+)-ATPase and its mRNAs in a rat liver cell line. Am J Physiol 258, C544–C551, 1990.10.1152/ajpcell.1990.258.3.C544 Search in Google Scholar

Giera S, Bansal R, Ortiz-Toro TM, Taub DG, Zoeller RT. Individual polychlorinated biphenyl (PCB) congeners produce tissue- and gene-specific effects on thyroid hormone signaling during development. Endocrinology 152, 2909–2919, 2011.10.1210/en.2010-1490 Search in Google Scholar

Giguere V, Ong ES, Segui P, Evans RM. Identification of a receptor for the morphogen retinoic acid. Nature 330, 624–629, 1987.10.1038/330624a0 Search in Google Scholar

Giguere V, Yang N, Segui P, Evans RM. Identification of a new class of steroid hormone receptors. Nature 331, 91–94, 1988.10.1038/331091a0 Search in Google Scholar

Glass CK, Franco R, Weinberger C, Albert VR, Evans RM, Rosenfeld MG. A c-erb-A binding site in rat growth hormone gene mediates trans-activation by thyroid hormone. Nature 329(6141), 738–741, 1987.10.1038/329738a0 Search in Google Scholar

Glass CK, Holloway JM, Devary OV, Rosenfeld MG. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54, 313–323, 1988.10.1016/0092-8674(88)90194-8 Search in Google Scholar

Glass CK, Holloway JM. Regulation of gene expression by the thyroid hormone receptor. Biochim Biophys Acta 1032, 157–176, 1990.10.1016/0304-419X(90)90002-I Search in Google Scholar

Glass CK. Some new twists in the regulation of gene expression by thyroid hormone and retinoic acid receptors. J Endocrinol 150, 349–357, 1996.10.1677/joe.0.1500349 Search in Google Scholar

Green S, Chambon P. Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4, 309–314, 1988.10.1016/0168-9525(88)90108-4 Search in Google Scholar

Gogakos AI, Duncan Bassett JH, Williams GR. Thyroid and bone. Arch Biochem Biophys 503, 129–136, 2010.10.1016/j.abb.2010.06.021 Search in Google Scholar

Gonzalez-Sancho JM, Garcia V, Bonilla F, Munoz A. Thyroid hormone receptors/THR genes in human cancer. Cancer Lett 192, 121–132, 2003.10.1016/S0304-3835(02)00614-6 Search in Google Scholar

Gross J, Pitt-Rivers R. The identification of 3,5,3’-L-triiodothyronine in human plasma. Lancet 259, 439–441, 1952.10.1016/S0140-6736(52)91952-1 Search in Google Scholar

Guigon CJ, Kim DW, Willingham MC, Cheng SY. Mutation of thyroid hormone receptor-Β in mice predisposes to the development of mammary tumors. Oncogene 30, 3384–3390, 2011.10.1038/onc.2011.50345778121399657 Search in Google Scholar

Gustafson TA, Markham BE, Bahl JJ, Morkin E. Thyroid hormone regulates expression of a transfected alpha-myosin heavy-chain fusion gene in fetal heart cells. Proc Natl Acad Sci USA 84, 3122–3126, 1987.10.1073/pnas.84.10.31223048203472199 Search in Google Scholar

Harington CR, Barger G. Chemistry of thyroxine: Constitution and synthesis of thyroxine. Biochem J 21, 169–183, 1927.10.1042/bj0210169125188616743801 Search in Google Scholar

Harvey CB, Williams GR. Mechanism of thyroid hormone action. Thyroid 12, 441–446, 2002.10.1089/10507250276014379112165104 Search in Google Scholar

Hashimoto K, Cohen RN, Yamada M, Markan KR, Monden T, Satoh T, Mori M, Wondisford FE. Cross-talk between thyroid hormone receptor and liver X receptor regulatory pathways is revealed in a thyroid hormone resistance mouse model. J Biol Chem 281, 295–302, 2006.10.1074/jbc.M507877200 Search in Google Scholar

Hashimoto K, Mori M. Crosstalk of thyroid hormone receptor and liver X receptor in lipid metabolism and beyond. Endocr J 58, 921–930, 2011.10.1507/endocrj.EJ11-0114 Search in Google Scholar

Hernandez A. Thyroid hormone role and economy in the developing testis. Vitam Horm 106, 473–500, 2018.10.1016/bs.vh.2017.06.005 Search in Google Scholar

Hernandez A, Martinez ME. Thyroid hormone action in the developing testis: intergenerational epigenetics. J Endocrinol 244, R33–R46, 2020.10.1530/JOE-19-0550 Search in Google Scholar

Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68, 397–406, 1992.10.1016/0092-8674(92)90479-V Search in Google Scholar

Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, Rosen-feld MG. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404. 1995.10.1038/377397a0 Search in Google Scholar

Hubbard JR, Kalimi M. Influence of proteinase inhibitors on glucocorticoid receptor properties: recent progress and future perspectives. Mol Cell Biochem 66, 101–109, 1985.10.1007/BF00220777 Search in Google Scholar

Ichikawa K, Brtko J, DeGroot LJ, Hashizume K, Yamada T. Stabilization, accurate determination, and purification of rat liver nuclear thyroid hormone receptor. J Endocrinol 120, 237–243, 1989.10.1677/joe.0.1200237 Search in Google Scholar

Iglesias P, Bajo MA, Selgas R, Diez JJ. Thyroid dysfunction and kidney disease: An update. Rev Endocr Metab Disord 18, 131–144, 2017.10.1007/s11154-016-9395-7 Search in Google Scholar

Ito M, Roeder RG. The TRAP/SMCC/mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab 12, 127–134, 2001.10.1016/S1043-2760(00)00355-6 Search in Google Scholar

Jazdzewski K, Boguslawska J, Jendrzejewski J, Liyanarachchi S, Pachucki J, Wardyn KA, Nauman A, de la Chapelle A. Thyroid hormone receptor beta (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metab 96, E546–E553, 2011.10.1210/jc.2010-1594 Search in Google Scholar

James SR, Franklyn JA, Kilby MD. Placental transport of thyroid hormone. Best Pract Res Clin Endocrinol Metab 21, 253–264, 2007.10.1016/j.beem.2007.03.001 Search in Google Scholar

Jerzak KJ, Cockburn J, Pond GR, Pritchard KI, Narod SA, Dhesy-Thind SK, Bane A. Thyroid hormone receptor α in breast cancer: prognostic and therapeutic implications. Breast Cancer Res Treat 149, 293–301, 2015.10.1007/s10549-014-3235-9 Search in Google Scholar

Jerzak KJ, Cockburn JG, Dhesy-Thind SK, Pond GR, Pritchard KI, Nofech Mozes S, Sun P, Narod SA, Bane A. Thyroid hormone receptor beta-1 expression in early breast cancer: a validation study. Breast Cancer Res Treat 171, 709–717, 2018.10.1007/s10549-018-4844-5 Search in Google Scholar

Joseph B, Ji M, Liu D, Hou P, Xing M. Lack of mutations in the thyroid hormone receptor (TR) alpha and beta genes but frequent hypermethylation of the TRbeta gene in differentiated thyroid tumors. J Clin Endocrinol Metab 92, 4766–4770, 2007.10.1210/jc.2007-0812 Search in Google Scholar

Jump DB, Narayan P, Towle H, Oppenheimer JH. Rapid effects of triiodothyronine on hepatic gene expression. Hybridization analysis of tissue-specific triiodothyronine regulation of mRNAS14. J Biol Chem 259, 2789–2797, 1984.10.1016/S0021-9258(17)43215-7 Search in Google Scholar

Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev 26, 704–728, 2005.10.1210/er.2003-003315632316 Search in Google Scholar

Kendall EC. The isolation in crystalline form of the compound containing iodine, which occurs in the thyroid: Its chemical nature and physiologic activity. J Am Med Assoc 64, 2042–2043, 1915.10.1001/jama.1915.02570510018005 Search in Google Scholar

Kim WG, Cheng SY. Thyroid hormone receptors and cancer. Biochim Biophys Acta 1830, 3928–3936, 2013.10.1016/j.bbagen.2012.04.002340624422507269 Search in Google Scholar

Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355, 446–449, 1992.10.1038/355446a061598851310351 Search in Google Scholar

Koenig RJ, Warne RL, Brent GA, Harney JW, Larsen PR, Moore DD. Isolation of a cDNA clone encoding a biologically active thyroid hormone receptor. Proc Natl Acad Sci USA 85, 5031–5035, 1988.10.1073/pnas.85.14.5031 Search in Google Scholar

Koenig RJ. Regulation of type 1 iodothyronine deiodinase in health and disease. Thyroid 15, 835–840, 2005.10.1089/thy.2005.15.835 Search in Google Scholar

Koerner D, Schwartz HL, Surks MI, Oppenheimer JH, Jorgensen EC. Binding of selected iodothyronine analogues to receptor sites of isolated rat hepatic nuclei: High correlation between structural requirements for nuclear binding and biological activity. J Biol Chem 250, 6417–6423, 1975.10.1016/S0021-9258(19)41080-6 Search in Google Scholar

Kohrle J. Guard your master: thyroid hormone receptors protect their gland of origin from thyroid cancer. Endocrinology 145, 4427–4429, 2004.10.1210/en.2004-092815375080 Search in Google Scholar

Krezel W, Ruhl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 491, 110436, 2019.10.1016/j.mce.2019.04.01631026478 Search in Google Scholar

La Vignera S, Vita R. Thyroid dysfunction and semen quality. Int J Immunopathol Pharmacol 32, 2058738418775241, 2018.10.1177/2058738418775241594658729737216 Search in Google Scholar

Lademann F, Tsourdi E, Hofbauer LC, Rauner M. Thyroid hormone actions and bone remodeling - The role of the Wnt signaling pathway. Exp Clin Endocrinol Diabetes 128, 450–454, 2020.10.1055/a-1088-121531958849 Search in Google Scholar

Ladenson PW, Bloch KD, Seidman JG. Modulation of atrial natriuretic factor by thyroid hormone: Messenger ribonucleic acid and peptide levels in hypothyroid, euthyroid, and hyperthyroid rat atria and ventricles. Endocrinology 123, 652–657, 1988.10.1210/endo-123-1-6522968239 Search in Google Scholar

Laudet V, Hanni C, Coll J, Catzeflis F, Stehelin D. Evolution of the nuclear receptor gene superfamily. EMBO J 11, 1003–1013, 1992.10.1002/j.1460-2075.1992.tb05139.x5565411312460 Search in Google Scholar

Laudet V. Evolution of the nuclear receptor superfamily: Early diversification from an ancestral orphan receptor. J Mol Endocrinol 19, 207–226, 1997.10.1677/jme.0.01902079460643 Search in Google Scholar

Leitman DC, Costa CH, Graf H, Baxter JD, Ribeiro RC. Thyroid hormone activation of transcription is potentiated by activators of cAMP-dependent protein kinase. J Biol Chem 271, 21950–21955, 1996.10.1074/jbc.271.36.21950 Search in Google Scholar

Li D, Li T, Wang F, Tian H, Samuels HH. Functional evidence for retinoid X receptor (RXR) as a nonsilent partner in the thyroid hormone receptor/RXR heterodimer. Mol Cell Biol 22, 5782–5792, 2002.10.1128/MCB.22.16.5782-5792.2002 Search in Google Scholar

Li H, Leo C, Schroen DJ, Chen JD. Characterization of receptor interaction and transcriptional repression by the corepressor SMRT. Mol Endocrinol 11, 2025–2037, 1997.10.1210/mend.11.13.0028 Search in Google Scholar

Liaw CW, Towle HC. Characterization of a thyroid hormone-responsive gene from rat. J Biol Chem 259, 7253–7260, 1984.10.1016/S0021-9258(17)39865-4 Search in Google Scholar

Liu YC, Yeh CT, Lin KH. Molecular functions of thyroid hormone signaling in regulation of cancer progression and anti-apoptosis. Int J Mol Sci 20, 4986, 2019.10.3390/ijms20204986683415531600974 Search in Google Scholar

Liu YY, Brent GA. Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation. Trends Endocrinol Metab 21, 166–173, 2010.10.1016/j.tem.2009.11.004283116120015660 Search in Google Scholar

Lu C, Cheng SY. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors. J Mol Endocrinol 44, 143–154, 2010.10.1677/JME-09-0107346409519741045 Search in Google Scholar

Maia AL, Kieffer JD, Harney JW, Larsen PR. Effect of 3,5,3’-Triiodothyronine (T3) administration on dio1 gene expression and T3 metabolism in normal and type 1 deiodinase-deficient mice. Endocrinology 136, 4842–4849, 1995.10.1210/endo.136.11.75882157588215 Search in Google Scholar

Macejova D, Baranova M, Liska J, Brtko J. Expression of nuclear hormone receptors, their coregulators and type I iodothyronine 5’-deiodinase gene in mammary tissue of nonlactating and postlactating rats. Life Sci 77, 2584–2593, 2005.10.1016/j.lfs.2005.02.02415946693 Search in Google Scholar

Macejova D, Podoba J, Toporova L, Grigerova M, Kajo K, Machalekova K, Brtko J. Causal associations of autoimmune thyroiditis and papillary thyroid carcinoma: mRNA expression of selected nuclear receptors and other molecular targets. Oncol Lett 18, 4270–4277, 2019.10.3892/ol.2019.10770675725531579073 Search in Google Scholar

Mancino G, Miro C, Di Cicco E, Dentice M. Thyroid hormone action in epidermal development and homeostasis and its implications in the pathophysiology of the skin. J Endocrinol Invest 2021. Epub ahead of print.10.1007/s40618-020-01492-2828534833683663 Search in Google Scholar

Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345, 224–229, 1990.10.1038/345224a02159111 Search in Google Scholar

Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6, 329–344, 1992.10.1101/gad.6.3.3291312497 Search in Google Scholar

Marimuthu A, Feng W, Tagami T, Nguyen H, Jameson JL, Fletterick RJ, Baxter JD, West BL. TR surfaces and conformations required to bind nuclear receptor corepressor. Mol Endocrinol 16, 271–286. 2002.10.1210/mend.16.2.077711818500 Search in Google Scholar

Marketos S, Eftychiadis A, Koutras DA. Thyroid diseases in the Byzantine era. J R Soc Med 83, 111–113, 1990.10.1177/01410768900830021812925102181133 Search in Google Scholar

Martinez-deMena R, Hernandez A, Obregon MJ. Triiodothyronine is required for the stimulation of type II 5’-deiodinase mRNA in rat brown adipocytes. Am J Physiol Endocrinol Metab 282, E1119–E1127, 2002.10.1152/ajpendo.00433.200111934678 Search in Google Scholar

Maruo T, Katayama K, Barnea ER, Mochizuki M. A role for thyroid hormone in the induction of ovulation and corpus luteum function. Horm Res 37, 12–18,1992.10.1159/0001823381427622 Search in Google Scholar

Mathisen PM, Miller L. Thyroid hormone induces constitutive keratin gene expression during Xenopus laevis development. Mol Cell Biol 9, 1823–1831, 1989.10.1128/mcb.9.5.1823-1831.19893629722473388 Search in Google Scholar

Mengeling BJ, Furlow JD. Pituitary specific retinoid-X receptor ligand interactions with thyroid hormone receptor signaling revealed by high throughput reporter and endogenous gene responses. Toxicol In Vitro 29, 1609–1618, 2015.10.1016/j.tiv.2015.06.01826096596 Search in Google Scholar

Metivier R, Reid G, Gannon F. Transcription in four dimensions: nuclear receptor-directed initiation of gene expression. EMBO reports 7, 161–167, 2006.10.1038/sj.embor.7400626136925416452926 Search in Google Scholar

Metz LD, Seidler FJ, McCook EC, Slotkin TA. Cardiac alpha-adrenergic receptor expression is regulated by thyroid hormone during a critical developmental period. J Mol Cell Cardiol 28, 1033–1044, 1996.10.1006/jmcc.1996.00968762041 Search in Google Scholar

Mintz G, Pizzarello R, Klein I. Enhanced left ventricular diastolic function in hyperthyroidism: noninvasive assessment and response to treatment. J Clin Endocrinol Metab 73, 146–150, 1991.10.1210/jcem-73-1-1462045465 Search in Google Scholar

Montero-Pedrazuela A, Venero C, Lavado-Autric R, Fernandez-Lamo I, Garcia-Verdugo JM, Bernal J, Guadano-Ferraz A. Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior. Mol Psychiatry 11, 361–371, 2006.10.1038/sj.mp.400180216446739 Search in Google Scholar

Morkin E, Edwards JG, Tsika RW, Bahl JJ, Flink IL. Regulation of human cardiac myosin heavy chain gene expression by thyroid hormone. Adv Exp Med Biol 308, 143–147, 1991.10.1007/978-1-4684-6015-5_121801581 Search in Google Scholar

Morkin E. Regulation of myosin heavy chain genes in the heart. Circulation 87, 1451–1460, 1993.10.1161/01.CIR.87.5.1451 Search in Google Scholar

Morte B, Manzano J, Scanlan T, Vennstrom B, Bernal J. Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA 99, 3985–3989, 2002.10.1073/pnas.06241329912263511891331 Search in Google Scholar

Naidoo S, Valcana T, Timiras PS. Thyroid hormone receptors in the developing rat brain. Amer Zool 18, 545–552, 1978.10.1093/icb/18.3.545 Search in Google Scholar

Nelson CC, Hendy SC, Faris JS, Romaniuk PJ. The effects of P-box substitutions in thyroid hormone receptor on DNA binding specificity. Mol Endocrinol 8, 829–840, 1994.10.1210/mend.8.7.79841457984145 Search in Google Scholar

Nevado J, Tenbaum SP, Aranda A. hSrb7, an essential human mediator component, acts as a coactivator for the thyroid hormone receptor. Mol. Cell. Endocrinol 222, 41–51, 2004.10.1016/j.mce.2004.05.00315249124 Search in Google Scholar

Niazi AK, Kalra S, Irfan A, Aliya Islam A. Thyroidology over the ages. Indian J Endocrinol Metab 15 (Suppl 2), S121–S126, 2011.10.4103/2230-8210.83347316985921966648 Search in Google Scholar

Norman MF, Lavin TN, Baxter JD, West BL. The rat growth hormone gene contains multiple thyroid response elements. J Biol Chem 264, 12063–12073, 1989.10.1016/S0021-9258(18)80174-0 Search in Google Scholar

Oppenheimer JH, Koerner D, Schwartz HL, Surks MI. Specific nuclear triiodothyronine binding sites in rat liver and kidney. J Clin Endocrinol Metab 35, 330–333, 1972.10.1210/jcem-35-2-330 Search in Google Scholar

Oppenheimer JH, Schwartz HL, Surks MI. Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: Liver, kidney, pituitary, heart, brain, spleen and testes. Endocrinology 95, 897–903, 1974.10.1210/endo-95-3-897 Search in Google Scholar

Oppenheimer JH, Schwartz HL, Surks MI, Koerner D, Dillmann WH. Nuclear receptors and the initiation of thyroid hormone action. Recent Prog Horm Res 32, 529–565, 1976.10.1016/B978-0-12-571132-6.50029-4 Search in Google Scholar

Oppenheimer JH. Evolving concepts of thyroid hormone action. Biochimie 81, 539–543, 1999.10.1016/S0300-9084(99)80107-2 Search in Google Scholar

Ortega FJ, Vazquez-Martin A, Moreno-Navarrete JM, Bassols J, Rodriguez-Hermosa J, Girones J, Ricart W, Peral B, Tinahones FJ, Fruhbeck G, Menendez JA, Fernandez-Real JM. Thyroid hormone responsive Spot 14 increases during differentiation of human adipocytes and its expression is down-regulated in obese subjects. Int J Obes (Lond) 34, 487–499, 2010.10.1038/ijo.2009.263 Search in Google Scholar

Pascual A, Aranda A. Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta 1830, 3908–3916, 2013.10.1016/j.bbagen.2012.03.012 Search in Google Scholar

Petty KJ, Morioka H, Mitsuhashi T, Nikodem VM. Thyroid hormone regulation of transcription factors involved in malic enzyme gene expression. J Biol Chem 264, 11483–11490, 1989.10.1016/S0021-9258(18)60489-2 Search in Google Scholar

Plateroti M, Chassande O, Fraichard A, Gauthier K, Freund JN, Samarut J, Kedinger M. Involvement of T3Ralphaand beta-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development. Gastroenterology 116, 1367–1378, 1999.10.1016/S0016-5085(99)70501-9 Search in Google Scholar

Plateroti M, Gauthier K, Domon-Dell C, Freund JN, Samarut J, Chassande O. Functional interference between thyroid hormone receptor alpha (TRalpha) and natural truncated TRDeltaalpha isoforms in the control of intestine development. Mol Cell Biol 21, 4761–4772, 2001.10.1128/MCB.21.14.4761-4772.20018716011416151 Search in Google Scholar

Poddar R, Paul S, Chaudhury S, Sarkar PK. Regulation of actin and tubulin gene expression by thyroid hormone during rat brain development. Brain Res Mol Brain Res 35, 111–118, 1996.10.1016/0169-328X(95)00189-Y Search in Google Scholar

Puca GA, Abbondanza C, Nigro V, Armetta I, Medici N, Molinari AM. Estradiol receptor has proteolytic activity that is responsible for its own transformation. Proc Natl Acad Sci USA 83, 5367–5371, 1986.10.1073/pnas.83.15.53673862872426695 Search in Google Scholar

Puzianowska-Kuznicka M, Krystyniak A, Madej A, Cheng SY, Nauman J. Functionally impaired TR mutants are present in thyroid papillary cancer. J Clin Endocrinol Metab 87, 1120–1128, 2002.10.1210/jcem.87.3.829611889175 Search in Google Scholar

Refetoff S, DeWind LT, DeGroot LJ. Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocrinol Metab 27, 279–294, 1967.10.1210/jcem-27-2-2794163616 Search in Google Scholar

Refetoff S, Dumitrescu AM. Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab 21, 277–305, 2007.10.1016/j.beem.2007.03.00517574009 Search in Google Scholar

Refetoff S, Bassett JH, Beck-Peccoz P, Bernal J, Brent G, Chatterjee K, De Groot LJ, Dumitrescu AM, Jameson JL, Kopp PA, Murata Y, Persani L, Samarut J, Weiss RE, Williams GR, Yen PM. Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism. J Clin Endocrinol Metab 99, 768–770, 2014.10.1210/jc.2013-3393394223624823702 Search in Google Scholar

Ritter MJ, Amano I, Hollenberg AN. Thyroid hormone signaling and the liver. Hepatology 72, 742–752, 2020.10.1002/hep.3129632343421 Search in Google Scholar

Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: A coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20, 1405–1428, 2006.10.1101/gad.142480616751179 Search in Google Scholar

Ruiz-Llorente L, Ardila-Gonzalez S, Fanjul LF, Martinez-Iglesias O, Aranda A. microRNAs 424 and 503 are mediators of the anti-proliferative and anti-invasive action of the thyroid hormone receptor beta. Oncotarget 5, 2918–2933, 2014.10.18632/oncotarget.1577410278024796297 Search in Google Scholar

Samuels HH, Tsai JS. Thyroid hormone action in cell culture: demonstration of nuclear receptors in intact cells and isolated nuclei. Proc Natl Acad Sci USA 70, 3488–3492, 1973.10.1073/pnas.70.12.34884272654357872 Search in Google Scholar

Samuels HH, Tsai JS, Casanova J. Thyroid hormone action: In vitro demonstration of putative receptors in isolated nuclei and soluble nuclear extracts. Science 184, 1188–1191, 1974.10.1126/science.184.4142.1188 Search in Google Scholar

Samuels HH, Stanley F, Casanova J. Relationship of receptor affinity to the modulation of thyroid hormone nuclear receptor levels and growth hormone synthesis by L-triiodothyronine and iodothyronine analogues in cultured GH1 cells. J Clin Invest 63, 1229–1240, 1979.10.1172/JCI109418 Search in Google Scholar

Sanchez-Martinez R, Castillo AI, Steinmeyer A, Aranda A. The retinoid X receptor ligand restores defective signalling by the vitamin D receptor, EMBO Rep 7, 1030–1034, 2006.10.1038/sj.embor.7400776 Search in Google Scholar

Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennstrom B. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324, 635–640, 1986.10.1038/324635a0 Search in Google Scholar

Schmutzler C, Brtko J, Winzer R, Jakobs TC, Meissner-Weigl J, Simon D, Goretzki PE, Kohrle J. Functional retinoid and thyroid hormone receptors in human thyroid-carcinoma cell lines and tissues. Int J Cancer 76, 368–376, 1998.10.1002/(SICI)1097-0215(19980504)76:3<368::AID-IJC14>3.0.CO;2-7 Search in Google Scholar

Shibata H, Spencer TE, Onate SA, Jenster G, Tsai SY, Tsai MJ, O’Malley BW. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 52, 141–164, 1997. Search in Google Scholar

Silva JF, Ocarino NM, Serakides R. Thyroid hormones and female reproduction. Biol Reprod 99, 907–921, 2018.10.1093/biolre/ioy115 Search in Google Scholar

Simonet WS, Ness GC. Transcriptional and posttranscriptional regulation of rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase by thyroid hormones. J Biol Chem 263, 12448–12453,1988.10.1016/S0021-9258(18)37775-5 Search in Google Scholar

Smith CL, O’Malley BW. Coregulator function: A key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25, 45–71, 2004.10.1210/er.2003-0023 Search in Google Scholar

Spaulding SW, Davis PJ. Thyroxine binding to soluble proteins in rat liver and its sex dependence. Biochim Biophys Acta 229, 279–283, 1971.10.1016/0005-2795(71)90345-X Search in Google Scholar

Sterling K, Milch PO, Brenner MA, Lazarus JH. Thyroid hormone action: the mitochondrial pathway. Science 197, 996–999, 1977.10.1126/science.196334 Search in Google Scholar

Sugie H, Verity MA. Postnatal histochemical fiber type differentiation in normal and hypothyroid rat soleus muscle. Muscle Nerve 8, 654–660,1985.10.1002/mus.880080805 Search in Google Scholar

Sun H, Cao L, Zheng R, Xie S, Liu C. Update on resistance to thyroid hormone syndrome β. Ital J Pediatr 46, 168, 2020.10.1186/s13052-020-00929-x Search in Google Scholar

Surks MI, Koerner D, Dillmann W, Oppenheimer JH. Limited capacity binding sites for L-triiodothyronine (T3) in rat liver nuclei: Localization to the chromatin and partial characterization of the T3-chromatin complex, J Biol Chem 248, 7066–7072, 1973.10.1016/S0021-9258(19)43362-0 Search in Google Scholar

Surks MI, Koerner DH, Oppenheimer JH. In vitro binding of L-triiodothyronine to receptors in rat liver nuclei: Kinetics of binding, extraction properties, and lack of requirement for cytosol proteins J Clin Invest 55, 50–60, 1975.10.1172/JCI107917 Search in Google Scholar

Tabachnick II, Bonnycastle DD, Salter WT. The distribution of 131I- and 131I-labelled thyroxine in rat liver homogenates. J Endocrinol 10, 302–304, 1954.10.1677/joe.0.0100302 Search in Google Scholar

Tang Y, Yu M, Lian X. Resistance to thyroid hormone α, revelation of basic study to clinical consequences. J Pediatr Endocrinol Metab 29, 511–522, 2016.10.1515/jpem-2015-0286 Search in Google Scholar

Tata JR, Ernster L, Suranyi EM. Interaction between thyroid hormones and cellular constituents. I. Binding to isolated sub-cellular particles and sub-particulate fractions. Biochim Biophys Acta 60, 461–479, 1962.10.1016/0006-3002(62)90866-1 Search in Google Scholar

Tata JR, Ernster L, Lindberg O, Arrhenius E, Pederson S, Hedman R. The action of thyroid hormones at the cell level. Biochem J 86, 408–428, 1967.10.1042/bj0860408120177513993432 Search in Google Scholar

Thompson CC, Weinberger C, Lebo R, Evans RM. Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science 237, 1610–1614, 1987.10.1126/science.36292593629259 Search in Google Scholar

Torresani J, DeGroot LJ. Triiodothyronine binding to liver nuclear solubilized proteins in vitro. Endocrinology 96, 1201–1209, 1975.10.1210/endo-96-5-1201235420 Search in Google Scholar

Tribulova N, Kurahara LH, Hlivak P, Hirano K, Szeiffova Bacova B. Pro-arrhythmic signaling of thyroid hormones and its relevance in subclinical hyperthyroidism. Int J Mol Sci 21, 2844, 2020.10.3390/ijms21082844 Search in Google Scholar

Umesono K, Evans RM. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57, 1139–1146, 1989.10.1016/0092-8674(89)90051-2 Search in Google Scholar

Usala SJ, Bale AE, Gesundheit N, Weinberger C, Lash RW, Wondisford FE, McBride OW, Weintraub BD. Tight linkage between the syndrome of generalized thyroid hormone resistance and the human c-erbA beta gene. Mol Endocrinol 12, 1217–1220, 1988a.10.1210/mend-2-12-12172905763 Search in Google Scholar

Usala SJ, Young WS 3rd, Morioka H, Nikodem VM. The effect of thyroid hormone on the chromatin structure and expression of the malic enzyme gene in hepatocytes. Mol Endocrinol 2, 619–626, 1988b.10.1210/mend-2-7-6193412327 Search in Google Scholar

Vallejo CG, Seguido AM, Testillano PS, Risueno MC. Thyroid hormone regulates tubulin expression in mammalian liver. Effects of deleting thyroid hormone receptor-alpha or -beta. Am J Physiol Endocrinol Metab 289, E87– E94, 2005.10.1152/ajpendo.00436.200415713690 Search in Google Scholar

Verga Falzacappa C, Panacchia L, Bucci B, Stigliano A, Cavallo MG, Brunetti E, Toscano V, Misiti S. 3,5,3′-Triiodothyronine (T3) is a survival factor for pancreatic beta-cells undergoing apoptosis. J Cell Physiol 206, 309–321, 2006.10.1002/jcp.2046016021636 Search in Google Scholar

Viguerie N, Langin D. Effect of thyroid hormone on gene expression. Curr Opin Clin Nutr Metab Care 6, 377–381, 2003.10.1097/00075197-200307000-00004 Search in Google Scholar

Visser WE. Therapeutic applications of thyroid hormone analogues. Ann Endocrinol (Paris) 4, S0003–4266(20)30039–1, 2020. Epub ahead of print. Search in Google Scholar

Wahlstrom GM, Sjoberg M, Andersson M, Nordstrom K, Vennstrom B. Binding characteristics of the thyroid hormone receptor homo- and heterodimers to consensus AGGTCA repeat motifs. Mol Endocrinol 6, 1013–1022, 1992.10.1210/me.6.7.1013 Search in Google Scholar

Waung JA, Bassett JH, Williams GR. Thyroid hormone metabolism in skeletal development and adult bone maintenance. Trends Endocrinol Metab 23, 155–162, 2012.10.1016/j.tem.2011.11.00222169753 Search in Google Scholar

Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb-A gene encodes a thyroid hormone receptor. Nature 324, 641–646, 1986.10.1038/324641a02879243 Search in Google Scholar

Weiss RE, Xu J, Ning G, Pohlenz J, O’Malley BW, Refetoff S. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. Embo J 18, 1900–1904. 1999.10.1093/emboj/18.7.1900 Search in Google Scholar

Williams GR. Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol 20, 8329–8342, 2000.10.1128/MCB.20.22.8329-8342.2000 Search in Google Scholar

Yamada S, Kakuta H. Retinoid X receptor ligands: A patent review (2007 - 2013). Expert Opin Ther Pat 24, 443–452, 2014.10.1517/13543776.2014.880692 Search in Google Scholar

Ye ZS, Forman BM, Aranda A, Pascual A, Park HY, Casanova J, Samuels HH. Rat growth hormone gene expression. Both cell-specific and thyroid hormone response elements are required for thyroid hormone regulation. J Biol Chem 263, 7821–7829, 1988.10.1016/S0021-9258(18)68572-2 Search in Google Scholar

Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev 81, 1097–1142, 2001.10.1152/physrev.2001.81.3.1097 Search in Google Scholar

Yen PM. Molecular basis of resistance to thyroid hormone. Trends Endocrinol Metab 14, 327–333. 2003.10.1016/S1043-2760(03)00114-0 Search in Google Scholar

Yen PM, Feng X, Flamant F, Chen Y, Walker RL, Weiss RE, Chassande O, Samarut J, Refetoff S, and Meltzer PS. Effects of ligand and thyroid hormone receptor isoforms on hepatic gene expression profiles of thyroid hormone receptor knockout mice. EMBO Rep 4, 581–587, 2003.10.1038/sj.embor.embor862131920212776178 Search in Google Scholar

Yin L, Wang Y, Dridi S, Vinson C, Hillgartner FB. Role of CCAAT/enhancer-binding protein, histone acetylation, and coactivator recruitment in the regulation of malic enzyme transcription by thyroid hormone. Mol Cell Endocrinol 245, 43–52, 2005.10.1016/j.mce.2005.10.00216293364 Search in Google Scholar

Xiao L, Xie X, Zhai Y Functional crosstalk of CAR-LXR and ROR-LXR in drug metabolism and lipid metabolism. Adv Drug Deliv Rev 62, 1316–1321, 2010.10.1016/j.addr.2010.07.00620659512 Search in Google Scholar

Zambrano A, Garcia-Carpizo V, Gallardo ME, Villamuera R, Gomez-Ferreria MA, Pascual A, Buisine N, Sachs LM, Garesse R, Aranda A. The thyroid hormone receptor β induces DNA damage and premature senescence. J Cell Biol 204, 129–146, 2014.10.1083/jcb.201305084388279524395638 Search in Google Scholar

Zechel C, Shen XQ, Chen JY, Chen ZP, Chambon P, Gronemeyer H. The dimerization interfaces formed between the DNA binding domains of RXR, RAR and TR determine the binding specificity and polarity of the full-length receptors to direct repeats. EMBO J 13, 1425–1433, 1994.10.1002/j.1460-2075.1994.tb06396.x3949608137826 Search in Google Scholar

Zhu XG, Zhao L, Willingham MC, Cheng SY. Thyroid hormone receptors are tumor suppressors in a mouse model of metastatic follicular thyroid carcinoma. Oncogene 29, 1909–1919, 2010.10.1038/onc.2009.476344388420062085 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo