1. bookVolume 53 (2019): Issue 4 (October 2019)
Journal Details
License
Format
Journal
eISSN
1336-0329
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
access type Open Access

The bone hormones and their potential effects on glucose and energy metabolism

Published Online: 15 Nov 2019
Volume & Issue: Volume 53 (2019) - Issue 4 (October 2019)
Page range: 268 - 273
Journal Details
License
Format
Journal
eISSN
1336-0329
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

The bones form the framework of our body. We know that bones protect our vital organs, regulate calcium and phosphorous homeostasis, and function as a site of erythropoiesis. More recently, however, the identification of bone hormones has allowed us to envision bones as endocrine organs too. Within the last few years, the bone hormones osteocalcin and lipocalin 2 have been implicated with glucose and energy metabolism. We systematically reviewed articles surrounding this subject and found a clear relationship between the osteocalcin levels and glucose tolerance and insulin sensitivity. We also found that many journals have shown the detrimental effects of an absences of lipocalin 2 from adipocytes. As osteocalcin administration to mice showed decreased blood glucose levels and promoted glucose tolerance and insulin sensitivity. Future studies could perhaps explore the use of osteocalcin as a supplement for type 2 diabetes.

Keywords

Alwahsh SM, Xu M, Seyhan HA, Ahmad S, Mihm S, Ramadori G, Schultze FC. Diet high in fructose leads to an overexpression of lipocalin-2 in rat fatty liver. World J Gastroenterol 20, 1807–1821, 2014.10.3748/wjg.v20.i7.1807393097924587658Open DOISearch in Google Scholar

Bouillon R, Bex M, Van Herck E, Laureys J, Dooms L, Lesaffre E, Ravussin E. Influence of age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes mellitus. J Clin Endocrinol Metab 80, 1194–1202, 1995.771408910.1210/jcem.80.4.77140897714089Search in Google Scholar

de Liefde II, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int 16, 1713–1720, 2005.10.1007/s00198-005-1909-115940395Search in Google Scholar

Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia 54, 1291–1297, 2011.10.1007/s00125-011-2155-z2150374021503740Open DOISearch in Google Scholar

Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50, 568–575, 2012.10.1016/j.bone.2011.04.01721550430318126721550430Open DOISearch in Google Scholar

Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921, 2004.10.1038/nature0310415531878Search in Google Scholar

Francisco V, Pino J, Gonzalez-Gay MA, Mera A, Lago F, Gomez R, Mobasheri A, Gualillo O. Adipokines and inflammation: is it a question of weight? Br J Pharmacol 175, 1569–1579, 2018.10.1111/bph.14181591339729486050Search in Google Scholar

Giudici KV, Fisberg RM, Marchioni DML, Peters BSE, Martini LA. Crosstalk between bone and fat tissue: associations between vitamin D, osteocalcin, adipokines, and markers of glucose metabolism among adolescents. J Am Coll Nutr 36, 273–280, 2017.10.1080/07315724.2016.127492328443718Open DOISearch in Google Scholar

Gomez-Chou SB, Swidnicka-Siergiejko AK, Badi N, Chavez-Tomar M, Lesinski GB, Bekaii-Saab T, Farren MR, Mace TA, Schmidt C, Liu Y, Deng D, Hwang RF, Zhou L, Moore T, Chatterjee D, Wang H, Leng X, Arlinghaus RB, Logsdon CD, Cruz-Monserrate Z. Lipocalin-2 promotes pancreatic ductal adenocarcinoma by regulating inflammation in the tumor microenvironment. Cancer Res 77, 2647–2660, 2017.10.1158/0008-5472.CAN-16-1986544123028249896Search in Google Scholar

Guntur AR, Rosen CJ. Bone as an endocrine organ. Endocr Pract 18, 758–762, 2012.10.4158/EP12141.RA357165422784851Open DOISearch in Google Scholar

Guo H, Jin D, Zhang Y, Wright W, Bazuine M, Brockman D, Bernlohr D, Chen, X. Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 59, 1376–1385, 2010.10.2337/db09-1735287469820332347Search in Google Scholar

Herman W. The global burden of diabetes: An overview. In: Diabetes mellitus in developing countries and under-served communities (Ed. S. Dagogo-Jack), Springer International Publishing, Switzerland, pp. 1–5, 2017.Search in Google Scholar

Holt SK, Karyadi DM, Kwon EM, Stanford JL, Nelson PS, Ostrander EA. Association of Megalin genetic polymorphisms with prostate cancer risk and prognosis. Clin Cancer Res 14, 3823–3831, 2008.10.1158/1078-0432.CCR-07-4566267588318559602Open DOISearch in Google Scholar

Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 579, 773–777, 2005.10.1016/j.febslet.2004.12.03115670845Search in Google Scholar

Ivers RQ, Cumming RG, Mitchell P, Peduto AJ; Blue Mountains Eye Study. Diabetes and risk of fracture. Diabetes Care 24, 1198–1203, 2001.10.2337/diacare.24.7.119811423502Open DOISearch in Google Scholar

Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166, 495–505, 2007.10.1093/aje/kwm10617575306Search in Google Scholar

Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 22, 187–194, 2011.10.1007/s00198-010-1184-720165834Search in Google Scholar

Kanazawa I. Osteocalcin as a hormone regulating glucose metabolism. World J Diabetes 6, 1345–1354, 2015.10.4239/wjd.v6.i18.1345468977926722618Search in Google Scholar

Karsenty G, Oury F, Biology without walls: the novel endocrinology of bone. Annu Rev Physiol 74, 87–105, 2012.10.1146/annurev-physiol-020911-15323322077214Search in Google Scholar

Lambertz J, Berger T, Mak TW, van Helden J, Weiskirchen R. Lipocalin-2 in fructose-induced fatty liver disease. Front Physiol 8, 964, 2017.2923428810.3389/fphys.2017.00964571234629234288Search in Google Scholar

Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469, 2007.10.1016/j.cell.2007.05.047201374617693256Search in Google Scholar

Liang Y, Tan A, Liang D, Yang X, Liao M, Gao Y, Jiang Y, Yao Z, Lin X, Lu Z, Wu C, Zhang S, Hu Y, Qin X, Mo Z, Li H, Zhang H. Low osteocalcin level is a risk factor for impaired glucose metabolism in a Chinese male population. J Diabetes Investig 7, 522–528, 2016.10.1111/jdi.12439493120227181428Search in Google Scholar

Marzolo PM, Farfan P. New insights into the roles of megalin/LRP2 and the regulation of its functional expression. Biol Res 44, 89–105, 2011.10.4067/S0716-9760201100010001221720686Search in Google Scholar

Mera P, Ferron M, Mosialou I. Regulation of energy metabolism by bone-derived hormones. Cold Spring Harb Perspect Med 8, a031666, 2018.10.1101/cshperspect.a031666598315928778968Search in Google Scholar

Mizokami A, Wang D, Tanaka M, Gao J, Takeuchi H, Matsui T, Hirata M. An extract from pork bones containing osteocalcin improves glucose metabolism in mice by oral administration. Biosci Biotechnol Biochem 80, 2176–2183, 2016.10.1080/09168451.2016.121453027460506Open DOISearch in Google Scholar

Miyamoto T, Asaka R, Suzuki A, Takatsu A, Kashima H, Shiozawa T. Immunohistochemical detection of a specific receptor for lipocalin2 (solute carrier family 22 member 17, SLC22A17) and its prognostic significance in endometrial carcinoma. Exp Mol Pathol 91, 563–568, 2011.10.1016/j.yexmp.2011.06.00221763306Search in Google Scholar

Mosialou I, Shikhel S, Liu J, Maurizi A, Luo N, He Z, Huang Y, Zong H, Friedman R, Barasch J, Lanzano P, Deng L, Leibel R, Rubin M, Nickolas T, Chung W, Zeltser L, Williams K, Pessin J, Kousteni S. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 543, 385–390, 2017.10.1038/nature21697597564228273060Search in Google Scholar

Neumann T, Lodes S, Kastner B, Franke S, Kiehntopf M, Lehmann T, Muller UA, Wolf G, Samann A. Osteocalcin, adipokines and their associations with glucose metabolism in type 1 diabetes. Bone 82, 50–55, 2016.10.1016/j.bone.2015.04.01725888930Open DOISearch in Google Scholar

Neve A, Corrado A, Cantatore FP. Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol 228, 1149–1153, 2013.10.1002/jcp.2427823139068Search in Google Scholar

Palmiter RD. Physiology: Bone-derived hormone suppresses appetite. Nature 543, 320–322, 2017.10.1038/nature2150128273066Search in Google Scholar

Pi M, Wu Y, Quarles LD. GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. J Bone Miner Res 26, 1680–1683, 2011.10.1002/jbmr.39021425331507953621425331Open DOISearch in Google Scholar

Pi M, Kapoor K, Ye R, Nishimoto SK, Smith JC, Baudry J, Quarles LD. Evidence for osteocalcin binding and activation of GPRC6A in β-cells. Endocrinology 157, 1866–1880, 2016.10.1210/en.2015-2010487087527007074Search in Google Scholar

Rached MT, Kode A, Silva BC, Jung DY, Gray S, Ong H, Paik JH, DePinho RA, Kim JK, Karsenty G, Kousteni S. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest 120, 357–368, 2010.10.1172/JCI39901279868720038793Search in Google Scholar

Saleem U, Mosley TH Jr, Kullo IJ. Serum osteocalcin is associated with measures of insulin resistance, adipokine levels, and the presence of metabolic syndrome. Arterioscler Thromb Vasc Biol 30, 1474–1478, 2010.10.1161/ATVBAHA.110.204859293991020395593Open DOISearch in Google Scholar

Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a meta-analysis. Osteoporos Int 18, 427–444, 2007.10.1007/s00198-006-0253-417068657Search in Google Scholar

Visscher V, Rassekh SR, Sandor GS, Caron HN, van Dalen EC, Kremer LC, van der Pal HJ, Rogers PC, Rieder MJ, Carleton BC, Hayden MR, Ross CJ; CPNDS consortium. Genetic variants in SLC22A17 and SLC22A7 are associated with anthracycline-induced cardiotoxicity in children. Pharmacogenomics 16, 1065–1076, 2015.10.2217/pgs.15.6126230641Search in Google Scholar

Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int 2014, 925350, 2014.10.1155/2014/925350401684424864265Search in Google Scholar

Wei J, Karsenty G. An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord 16, 93–98, 2015.10.1007/s11154-014-9307-7449932725577163Search in Google Scholar

Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, Houstis NE, Kahn BB, Rosen ED. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56, 2533–2540, 2007.1763902110.2337/db07-000717639021Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo