1. bookVolume 53 (2019): Issue 1 (January 2019)
Journal Details
License
Format
Journal
eISSN
1336-0329
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Open Access

Neuronal morphology alterations in autism and possible role of oxytocin

Published Online: 23 Feb 2019
Volume & Issue: Volume 53 (2019) - Issue 1 (January 2019)
Page range: 46 - 54
Journal Details
License
Format
Journal
eISSN
1336-0329
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

Current understanding of the neuroanatomical abnormalities in autism includes gross anatomical changes in several brain areas and microstructural alterations in neuronal cells as well. There are many controversies in the interpretation of the imaging data, evaluation of volume and size of particular brain areas, and their functional translation into a broad autism phenotype. Critical questions of neuronal pathology in autism include the concept of the reversible plasticity of morphological changes, volume alterations of brain areas, and both short- and long-term consequences of adverse events present during the brain development. At the cellular level, remodeling of the actin cytoskeleton is considered as one of the critical factors associated with the autism spectrum disorders. Alterations in the composition of the neuronal cytoskeleton, in particular abnormalities in the polymerization of actin filaments and their associated proteins underlie the functional consequences in behavior resulting in symptoms and clinical correlates of autism spectrum disorder. In the present review, a special attention is devoted to the role of oxytocin in experimental models of neurodevelopmental disorders manifesting alterations in neuronal morphology.

Keywords

Abell F, Krams M, Ashburner J, Passingham R, Friston K, Frackowiak R, Happe F, Frith C, Frith U. The neuro-anatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport 10, 1647–1651, 1999.10.1097/00001756-199906030-00005Search in Google Scholar

Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci 31, 137–145, 2008.10.1016/j.tins.2007.12.005Open DOISearch in Google Scholar

Auzias G, Viellard M, Takerkart S, Villeneuve N, Poinso F, Fonseca DD, Girard N, Deruelle C. Atypical sulcal anatomy in young children with autism spectrum disorder. Neuroimage Clin 4, 593–603, 2014.2493641010.1016/j.nicl.2014.03.008Search in Google Scholar

Avino TA, Barger N, Vargas MV, Carlson EL, Amaral DG, Bauman MD, Schumann CM. Neuron numbers increase in the human amygdala from birth to adulthood, but not in autism. Proc Natl Acad Sci U S A 115, 3710–3715, 2018.10.1073/pnas.1801912115Search in Google Scholar

Bakos J, Bacova Z, Grant SG, Castejon AM, Ostatnikova D. Are molecules involved in neuritogenesis and axon guidance related to autism pathogenesis? Neuromolecular Med 17, 297–304, 2015.10.1007/s12017-015-8357-7Search in Google Scholar

Bakos J, Zatkova M, Bacova Z, Ostatnikova D. The role of hypothalamic neuropeptides in neurogenesis and neurito-genesis. Neural Plast 2016, 3276383, 2016.10.1155/2016/3276383Search in Google Scholar

Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SC. The amygdala theory of autism. Neurosci Biobehav Rev 24, 355–364, 2000.10.1016/S0149-7634(00)00011-7Search in Google Scholar

Baron-Mendoza I, Garcia O, Calvo-Ochoa E, Rebollar-Garcia JO, Garzon-Cortes D, Haro R, Gonzalez-Arenas A. Alterations in neuronal cytoskeletal and astrocytic proteins content in the brain of the autistic-like mouse strain C58/J. Neurosci Lett 682, 32–38, 2018.10.1016/j.neulet.2018.06.00429885454Search in Google Scholar

Bellani M, Calderoni S, Muratori F, Brambilla P. Brain anatomy of autism spectrum disorders I. Focus on corpus callosum. Epidemiol Psychiatr Sci 22, 217–221, 2013a.10.1017/S2045796013000139836733223531487Open DOISearch in Google Scholar

Bellani M, Calderoni S, Muratori F, Brambilla P. Brain anatomy of autism spectrum disorders II. Focus on amygdala. Epidemiol Psychiatr Sci 22, 309–312. 2013b.10.1017/S2045796013000346836734423815810Open DOISearch in Google Scholar

Blackmon K, Ben-Avi E, Wang X, Pardoe HR, Di Martino A, Halgren E, Devinsky O, Thesen T, Kuzniecky R. Periventricular white matter abnormalities and restricted repetitive behavior in autism spectrum disorder. Neuroimage Clin 10, 36–45, 2015.10.1016/j.nicl.2015.10.017Search in Google Scholar

Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, Kajiwara Y, Yang M, Katz AM, Scattoni ML, Harris MJ, Saxena R, Silverman JL, Crawley JN, Zhou Q, Hof PR, Buxbaum JD. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 1, 15, 2010.10.1186/2040-2392-1-15Search in Google Scholar

Brambilla P, Hardan A, di Nemi SU, Perez J, Soares JC, Barale F. Brain anatomy and development in autism: review of structural MRI studies. Brain Res Bull 61, 557–569, 2003.10.1016/j.brainresbull.2003.06.001Open DOISearch in Google Scholar

Carper RA, Courchesne E. Localized enlargement of the frontal cortex in early autism. Biol Psychiatry 57, 126–133, 2005.1565287010.1016/j.biopsych.2004.11.005Search in Google Scholar

Chapman DB, Theodosis DT, Montagnese C, Poulain DA, Morris JF. Osmotic stimulation causes structural plasticity of neurone-glia relationships of the oxytocin but not vasopressin secreting neurones in the hypothalamic supraoptic nucleus. Neuroscience 17, 679–686, 1986.10.1016/0306-4522(86)90039-42422593Open DOISearch in Google Scholar

Comin CH, da Fontoura Costa L. Shape, connectedness and dynamics in neuronal networks. J Neurosci Methods 220, 100–115, 2013.10.1016/j.jneumeth.2013.08.00223954264Search in Google Scholar

Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Haas RH, Akshoomoff NA, Courchesne RY. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57, 245–254, 2001.1146830810.1212/WNL.57.2.245Search in Google Scholar

Courchesne E, Campbell K, Solso S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 1380, 138–145, 2011a.10.1016/j.brainres.2010.09.101450050720920490Search in Google Scholar

Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Barnes CC, Pierce K. Neuron number and size in prefrontal cortex of children with autism. JAMA 306, 2001–2010, 2011b.10.1001/jama.2011.163822068992Search in Google Scholar

Crawford JD, Chandley MJ, Szebeni K, Szebeni A, Waters B, Ordway GA. Elevated GFAP Protein in Anterior Cingu-late Cortical White Matter in Males With Autism Spectrum Disorder. Autism Res 8, 649–657, 2015.10.1002/aur.148025846779Search in Google Scholar

DeRamus TP, Kana RK. Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders. Neuroimage Clin 7, 525–536, 2014.2584430610.1016/j.nicl.2014.11.004Search in Google Scholar

Donovan AP, Basson MA. The neuroanatomy of autism - a developmental perspective. J Anat 230, 4–15, 2017.10.1111/joa.12542Search in Google Scholar

Duffney LJ, Zhong P, Wei J, Matas E, Cheng J, Qin L, Ma K, Dietz DM, Kajiwara Y, Buxbaum JD, Yan Z. Autism-like deficits in shank3-deficient mice are rescued by targeting actin regulators. Cell Rep 11, 1400–1413, 2015.10.1016/j.celrep.2015.04.064Search in Google Scholar

Eaton JL, Roache L, Nguyen KN, Cushing BS, Troyer E, Papademetriou E, Raghanti MA. Organizational effects of oxytocin on serotonin innervation. Dev Psychobiol 54, 92–97, 2012.10.1002/dev.20566Search in Google Scholar

Ecker C, Bookheimer SY, Murphy DG. Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol 14, 1121–1134, 2015.10.1016/S1474-4422(15)00050-2Open DOISearch in Google Scholar

Gallese V. The roots of empathy: the shared manifold hypothesis and the neural basis of intersubjectivity. Psychopathology 36, 171–180, 2003.1450445010.1159/00007278614504450Search in Google Scholar

Gillberg CL. The Emanuel Miller Memorial Lecture 1991. Autism and autistic-like conditions: subclasses among disorders of empathy. J Child Psychol Psychiatry 33, 813–842, 1992.10.1111/j.1469-7610.1992.tb01959.x1634591Search in Google Scholar

Gordon-Weeks PR, Fournier AE. Neuronal cytoskeleton in synaptic plasticity and regeneration. J Neurochem 129, 206–212, 2014.10.1111/jnc.1250224147810Search in Google Scholar

Haar S, Berman S, Behrmann M, Dinstein I. Anatomical abnormalities in autism? Cereb Cortex 26, 1440–1452, 2016.10.1093/cercor/bhu2422531633525316335Open DOISearch in Google Scholar

Hadjikhani N, Joseph RM, Snyder J, Tager-Flusberg H. Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb Cortex 16, 1276–1282, 2006.1630632410.1093/cercor/bhj06916306324Search in Google Scholar

Hruska M, Henderson N, Le Marchand SJ, Jafri H, Dalva MB. Synaptic nanomodules underlie the organization and plasticity of spine synapses. Nat Neurosci 21, 671–682, 2018.10.1038/s41593-018-0138-9592078929686261Open DOISearch in Google Scholar

Joensuu M, Lanoue V, Hotulainen P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 84, 362–381, 2018.10.1016/j.pnpbp.2017.08.02328870634Open DOISearch in Google Scholar

Kaufmann WE, Cooper KL, Mostofsky SH, Capone GT, Kates WR, Newschaffer CJ, Bukelis I, Stump MH, Jann AE, Lanham DC. Specificity of cerebellar vermian abnormalities in autism: a quantitative magnetic resonance imaging study. J Child Neurol 18, 463–470, 2003.1294065110.1177/0883073803018007050112940651Search in Google Scholar

Kucharsky Hiess R, Alter R, Sojoudi S, Ardekani BA, Kuzniecky R, Pardoe HR. Corpus callosum area and brain volume in autism spectrum disorder: quantitative analysis of structural MRI from the ABIDE database. J Autism Dev Disord 45, 3107–3114, 2015.10.1007/s10803-015-2468-826043845Search in Google Scholar

Lee TT, Skafidas E, Dottori M, Zantomio D, Pantelis C, Everall I, Chana G. No preliminary evidence of differences in astrocyte density within the white matter of the dorsolateral prefrontal cortex in autism. Mol Autism 8, 64, 2017.2923449210.1186/s13229-017-0181-5572154629234492Search in Google Scholar

Leonzino M, Busnelli M, Antonucci F, Verderio C, Mazzanti M, Chini B. The timing of the excitatory-to-inhibitory GABA switch is regulated by the oxytocin receptor via KCC2. Cell Rep 15, 96–103, 2016.10.1016/j.celrep.2016.03.01327052180482644027052180Open DOISearch in Google Scholar

Leslie KR, Johnson-Frey SH, Grafton ST. Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage 21, 601–607, 2004.10.1016/j.neuroimage.2003.09.03814980562Open DOISearch in Google Scholar

Lestanova Z, Bacova Z, Kiss A, Havranek T, Strbak V, Bakos J. Oxytocin increases neurite length and expression of cytoskeletal proteins associated with neuronal growth. J Mol Neurosci 59, 184–192, 2016.10.1007/s12031-015-0664-926474566Search in Google Scholar

Leuner B, Caponiti JM, Gould E. Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus 22, 861–868, 2012.10.1002/hipo.20947475659021692136Open DOISearch in Google Scholar

Lin YT, Chen CC, Huang CC, Nishimori K, Hsu KS. Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons. Nat Commun 8, 537, 2017.10.1038/s41467-017-00675-5559965128912554Search in Google Scholar

Liu R, Yuan X, Chen K, Jiang Y, Zhou W. Perception of social interaction compresses subjective duration in an oxytocin-dependent manner. Elife 7, pii: e32100, 2018.10.7554/eLife.32100596391829784084Search in Google Scholar

McAlonan GM, Daly E, Kumari V, Critchley HD, van Amelsvoort T, Suckling J, Simmons A, Sigmundsson T, Green-wood K, Russell A, Schmitz N, Happe F, Howlin P, Murphy DG. Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain 125, 1594–1606, 2002.Search in Google Scholar

Meyer M, Berger I, Winter J, Jurek B. Oxytocin alters the morphology of hypothalamic neurons via the transcription factor myocyte enhancer factor 2A (MEF-2A). Mol Cell Endocrinol 477, 156–162, 2018.10.1016/j.mce.2018.06.01329928931Search in Google Scholar

Nagel J, Delandre C, Zhang Y, Forstner F, Moore AW, Tavosanis G. Fascin controls neuronal class-specific dendrite arbor morphology. Development 139, 2999–3009, 2012.10.1242/dev.07780022764047Search in Google Scholar

Nickl-Jockschat T, Habel U, Michel TM, Manning J, Laird AR, Fox PT, Schneider F, Eickhoff SB. Brain structure anomalies in autism spectrum disorder-a meta-analysis of VBM studies using anatomic likelihood estimation. Hum Brain Mapp 33, 1470–1489, 2012.10.1002/hbm.21299480148821692142Open DOISearch in Google Scholar

Palanisamy A, Kannappan R, Xu Z, Martino A, Friese MB, Boyd JD, Crosby G, Culley DJ. Oxytocin alters cell fate selection of rat neural progenitor cells in vitro. PLoS One 13, e0191160, 2018.10.1371/journal.pone.0191160577317929346405Search in Google Scholar

Pani G, Samari N, Quintens R, de Saint-Georges L, Meloni M, Baatout S, Van Oostveldt P, Benotmane MA. Morphological and physiological changes in mature in vitro neuronal networks towards exposure to short-, middle-or long-term simulated microgravity. PLoS One 8, e73857, 2013.10.1371/journal.pone.0073857377477424066080Search in Google Scholar

Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8, 287–299, 2007.10.1038/nrn210717375041Search in Google Scholar

Pearson BL, Corley MJ, Vasconcellos A, Blanchard DC, Blanchard RJ. Heparan sulfate deficiency in autistic postmortem brain tissue from the subventricular zone of the lateral ventricles. Behav Brain Res 243, 138–145, 2013.10.1016/j.bbr.2012.12.062359406123318464Search in Google Scholar

Peltola MJ, Strathearn L, Puura K. Oxytocin promotes face-sensitive neural responses to infant and adult faces in mothers. Psychoneuroendocrinology 91, 261–270, 2018.10.1016/j.psyneuen.2018.02.01229478725Open DOISearch in Google Scholar

Peng H, Hawrylycz M, Roskams J, Hill S, Spruston N, Meijering E, Ascoli GA. BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. Neuron 87, 252–256, 2015.10.1016/j.neuron.2015.06.036472529826182412Search in Google Scholar

Piven J, Berthier ML, Starkstein SE, Nehme E, Pearlson G, Folstein S. Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. Am J Psychiatry 147, 734–739, 1990.10.1176/ajp.147.6.7342343916Search in Google Scholar

Rapin I, Katzman R. Neurobiology of autism. Ann Neurol 43, 7–14, 1998.10.1002/ana.4104301069450763Open DOISearch in Google Scholar

Raymond GV, Bauman ML, Kemper TL. Hippocampus in autism: a Golgi analysis. Acta Neuropathol 91, 117–119, 1996.10.1007/s0040100504018773156Search in Google Scholar

Reichova A, Zatkova M, Bacova Z, Bakos J. Abnormalities in interactions of Rho GTPases with scaffolding proteins contribute to neurodevelopmental disorders. J Neurosci Res 96, 781–788, 2018.2916820710.1002/jnr.2420029168207Search in Google Scholar

Sadybekov A, Tian C, Arnesano C, Katritch V, Herring BE. An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Nat Commun 8, 601, 2017.10.1038/s41467-017-00472-0560566128928363Search in Google Scholar

Schumann CM, Barnes CC, Lord C, Courchesne E. Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biol Psychiatry 66, 942–949, 2009.1972602910.1016/j.biopsych.2009.07.007279536019726029Search in Google Scholar

Schumann CM, Nordahl CW. Bridging the gap between MRI and postmortem research in autism. Brain Res 1380, 175–186, 2011.10.1016/j.brainres.2010.09.061305007820869352Search in Google Scholar

Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM. Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 23, 289–299, 2008.10.1016/j.eurpsy.2007.05.0061776548517765485Open DOISearch in Google Scholar

Star EN, Kwiatkowski DJ, Murthy VN. Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 5, 239–246, 2002.1185063010.1038/nn81111850630Search in Google Scholar

Suren P, Stoltenberg C, Bresnahan M, Hirtz D, Lie KK, Lipkin WI, Magnus P, Reichborn-Kjennerud T, Schjolberg S, Susser E, Oyen AS, Li L, Hornig M. Early growth patterns in children with autism. Epidemiology 24, 660–670, 2013.2386781310.1097/EDE.0b013e31829e1d45374937723867813Search in Google Scholar

Theodosis DT, Poulain DA. Evidence that oxytocin-secreting neurones are involved in the ultrastructural reorganisation of the rat supraoptic nucleus apparent at lactation. Cell Tissue Res 235, 217–219, 1984.10.1007/BF002137456365328Search in Google Scholar

Theodosis DT, Koksma JJ, Trailin A, Langle SL, Piet R, Lodder JC, Timmerman J, Mansvelder H, Poulain DA, Oliet SH, Brussaard AB. Oxytocin and estrogen promote rapid formation of functional GABA synapses in the adult supraoptic nucleus. Mol Cell Neurosci 31, 785–794, 2006.10.1016/j.mcn.2006.01.00616488155Open DOISearch in Google Scholar

Traut N, Beggiato A, Bourgeron T, Delorme R, Rondi-Reig L, Paradis AL, Toro R. Cerebellar volume in autism: Literature meta-analysis and analysis of the autism brain imaging data exchange cohort. Biol Psychiatry 83, 579–588, 2018.10.1016/j.biopsych.2017.09.0292914604829146048Open DOISearch in Google Scholar

Van Goor D, Hyland C, Schaefer AW, Forscher P. The role of actin turnover in retrograde actin network flow in neuronal growth cones. PLoS One 7, e30959, 2012.10.1371/journal.pone.0030959328104522359556Search in Google Scholar

Verkuyl JM, Matus A. Time-lapse imaging of dendritic spines in vitro. Nat Protoc 1, 2399–2405, 2006.10.1038/nprot.2006.35717406483Search in Google Scholar

Wang YF, Hatton GI. Mechanisms underlying oxytocin-induced excitation of supraoptic neurons: prostaglandin mediation of actin polymerization. J Neurophysiol 95, 3933–3947, 2006.10.1152/jn.01267.200516554501Search in Google Scholar

Wang YF, Hatton GI. Interaction of extracellular signal-regulated protein kinase 1/2 with actin cytoskeleton in supraoptic oxytocin neurons and astrocytes: role in burst firing. J Neurosci 27, 13822–13834, 2007.10.1523/JNEUROSCI.4119-07.2007667363618077694Open DOISearch in Google Scholar

Wegiel J, Flory M, Kuchna I, Nowicki K, Ma SY, Imaki H, Wegiel J, Cohen IL, London E, Brown WT, Wisniewski T. Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism. Acta Neuropathol Commun 2, 28, 2014.10.1186/2051-5960-2-28400752924612906Open DOISearch in Google Scholar

Yamamoto Y, Cushing BS, Kramer KM, Epperson PD, Hoffman GE, Carter CS. Neonatal manipulations of oxytocin alter expression of oxytocin and vasopressin immunoreactive cells in the paraventricular nucleus of the hypothalamus in a gender-specific manner. Neuroscience 125, 947–955, 2004.10.1016/j.neuroscience.2004.02.02815120854Search in Google Scholar

Yang DY, Beam D, Pelphrey KA, Abdullahi S, Jou RJ. Cortical morphological markers in children with autism: a structural magnetic resonance imaging study of thickness, area, volume, and gyrification. Mol Autism 7, 11, 2016.10.1186/s13229-016-0076-x472739026816612Search in Google Scholar

Zatkova M, Reichova A, Bacova Z, Strbak V, Kiss A, Bakos J. Neurite outgrowth stimulated by oxytocin is modulated by inhibition of the calcium voltage-gated channels. Cell Mol Neurobiol 38, 371–378, 2018.10.1007/s10571-017-0503-32849323328493233Open DOISearch in Google Scholar

Zeidan-Chulia F, Rybarczyk-Filho JL, Salmina AB, de Oliveira BH, Noda M, Moreira JC. Exploring the multifactorial nature of autism through computational systems biology: calcium and the Rho GTPase RAC1 under the spotlight. Neuromolecular Med 15, 364–383, 2013.10.1007/s12017-013-8224-323456597Search in Google Scholar

Zielinski BA, Prigge MB, Nielsen JA, Froehlich AL, Abildskov TJ, Anderson JS, Fletcher PT, Zygmunt KM, Travers BG, Lange N, Alexander AL, Bigler ED, Lainhart JE. Longitudinal changes in cortical thickness in autism and typical development. Brain 137, 1799–1812, 2014.10.1093/brain/awu083403210124755274Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo