Open Access

A Novel Data Mining Approach for Defect Detection in the Printed Circuit Board Manufacturing Process


Cite

Aronszajn, N. (1950). Theory of Reproducing Kernels. Transactions of the American Mathematical Society, 68, 337-404. doi: 10.2307/1990404 Open DOISearch in Google Scholar

Banjoko, A. W., Yahya, W. B., Garba, M. K., & Abdulazeez, K. O. (2019). Weighted support vector machine algorithm for efficient classification and prediction of binary response data. Journal of Physics: Conference Series, 1366. doi: 10.1088/1742-6596/1366/1/012101 Open DOISearch in Google Scholar

Bartova, B., Bina, V., & Vachova, L. (2022). A PRISMA-driven systematic review of data mining methods used for defects detection and classification in the manufacturing industry. Production, 32. doi: 10.1590/0103-6513.20210097 Open DOISearch in Google Scholar

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144-152. doi: 10.1145/130385.130401 Open DOISearch in Google Scholar

Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 67-121. doi: 10.1023/A:1009715923555 Open DOISearch in Google Scholar

Chapelle, O., & Schölkopf, B. (2002). Incorporating invariances in non-linear support vector machines. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems (pp. 594–609). Cambridge, MA: MIT Press. Search in Google Scholar

Chavan, R. R., Chavan, S. A., Dokhe, G. D., Wagh, M. B., & Vaidya, A. S. (2016). Quality Control of PCB using Image Processing. International Journal of Computer Applications, 141(5), 28-32. Search in Google Scholar

Cortes, C., & Vapnik, V.N. (1995). Support-vector networks, Machine Learning, 20, 273-297. doi: 10.1007/BF00994018 Open DOISearch in Google Scholar

Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. NY Cambridge University Press. doi: 10.1017/CBO9780511801389 Open DOISearch in Google Scholar

Ghosh, A., Guha, T., Bhar, R. B., & Das, S. (2010). Pattern classification of fabric defects using support vector machine. International Journal of Clothing Science and Technology, 23(2/3), 142-151. doi: 10.1108/09556221111107333 Open DOISearch in Google Scholar

Hassanin, A. A. I. M., Abd El-Samie, F. E., & El Banby, G. M. (2019). A real-time approach for automatic defect detection from PCBs based on SURF features and morphological operations. Multimedia Tools and Applications, 78(24), 34437-34457. doi: 10.1007/s11042-019-08097-9 Open DOISearch in Google Scholar

Hu, B., & Wang, J. (2020). Detection of PCB Surface Defects With Improved Faster-RCNN and Feature Pyramid Network. IEEE Access, 8, 108335-108345. doi: 10.1109/ACCESS.2020.3001349 Open DOISearch in Google Scholar

Isa, D., Rajkumar, R., & Woo, K. C. (2007). Pipeline Defect Detection Using Support Vector Machines. 6th WSEAS International Conference on Circuits, Systems, Electronics, Control and Signal Processing, Egypt. Retrieved from http://www.wseas.us/e-library/conferences/2007egypt/papers/568-369.pdf Search in Google Scholar

Kakkar, S., & Narag, A.S. (2007). Recommending a TQM model for Indian organisations. The TQM Magazine, 19(6), 328-353. doi: 10.1108/09544780710756232 Open DOISearch in Google Scholar

Kim, Y.-G., & Park, T.-H. (2020). SMT Assembly Inspection Using Dual-Stream Convolutional Networks and Two Solder Regions. Applied Sciences, 10(13). doi: 10.3390/app10134598 Open DOISearch in Google Scholar

Kumar, P., Shreekanth, T., & Prajwal, M. (2020). Automated Quality Inspection of PCB Assembly Using Image Processing. International Journal of Image, Graphics and Signal Processing, 12(3). doi: 10.5815/ijigsp.2020.03.02 Open DOISearch in Google Scholar

Mahfuz, R. A., M., Hoque, R., Pramanik, B. K., Hamid, E., & Ali Moni, M. (2020). SVM Model for Feature Selection to Increase Accuracy and Reduce False Positive Rate in Falls Detection. doi: 10.1109/IC-4ME247184.2019.9036529 Open DOISearch in Google Scholar

Meyer, D. (2020). Support Vector Machines. Retrieved from https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf Search in Google Scholar

Mujica, L. E., Vehí, J., Ruiz, M., Verleysen, M., Staszewski, W., & Worden, K. (2008). Multivariate statistics process control for dimensionality reduction in structural assessment. Mechanical Systems and Signal Processing, 22(1), 155-171. doi: 10.1016/j.ymssp.2007.05.001 Open DOISearch in Google Scholar

Reshadat, V., & Kapteijns, R. A. J. W. (2021). Improving the Performance of Automated Optical Inspection (AOI) Using Machine Learning Classifiers. 2021 International Conference on Data and Software Engineering (ICoDSE). doi: 10.1109/ICoDSE53690.2021.9648445 Open DOISearch in Google Scholar

Rokach, L., & Maimon, O. (2006). Data Mining for Improving the Quality of Manufacturing: A Feature Set Decomposition Approach. Journal of Intelligent Manufacturing, 17(3), 285-299. doi: 10.1007/s10845-005-0005-x Open DOISearch in Google Scholar

Shawe-Taylor, J., Bartlett, P.L., Willianmson, R.C., & Anthony, M. (1998). Structural risk minimization over data-dependent hierarchies, IEEE Trans. Information Theory, 44(5), 1926-1940. doi: 10.1109/18. 705570 Open DOISearch in Google Scholar

Soukup, R. (2010). A methodology for optimization of false call rate in automated optical inspection post reflow. doi: 10.1109/ISSE.2010.5547304 Open DOISearch in Google Scholar

Sun, J., Wang, C., Sun, J., & Wang, L. (2013). Analog Circuit Soft Fault Diagnosis based on PCA and PSO-SVM. Journal of Networks, 8(12), 2791-2796. Search in Google Scholar

Suo, H., Li, M., Lu, P., & Yan, Y. (2008). Using SVM as Back-End Classifier for Language Identification. EURASIP Jurnal Audio, Speech, and Music Processing, 674859. doi: 10.1155/2008/674859 Open DOISearch in Google Scholar

Tseng, T.-L., Aleti, K. R., Hu, Z., & Kwon, Y. (2015). E-quality control: A support vector machines approach. Journal of Computational Design and Engineering, 3, 91-101. doi: 10.1016/j.jcde.2015.06.010 Open DOISearch in Google Scholar

Vapnik, V. (1998). The Support Vector Method of Function Estimation. Nonlinear Modelling, 55-85. doi: 10.1007/978-1-4615-5703-6_3 Open DOISearch in Google Scholar

Vapnik, V. N. (1995). The nature of statistical learning theory. New York, USA: Springer-Verlag. Search in Google Scholar

Vapnik, V. N. (1999). An overview of statistical learning theory, IEEE Trans. Neural Networks, 10(5), 988-999. doi: 10.1109/72.788640 Open DOISearch in Google Scholar

Vapnik, V. N., Golowich, S., & Smola, A. (1997). Support vector method for function approximation, regression estimation and signal processing. Advances in Neural Information processing Systems. Cambridge, MA: MIT Press. Search in Google Scholar

Wang, S. yuan, Zhao, Y., & Wen, L. (2016). PCB welding spot detection with image processing method based on automatic threshold image segmentation algorithm and mathematical morphology. Circuit World, 42(3), 97-103. doi: 10.1108/CW-08-2015-0039 Open DOISearch in Google Scholar

Williamson, R. C., Smola, A., & Schölkopf, B. (1999). Entropy numbers, operators and support vector kernels. Cambridge, MA: MIT Press. Search in Google Scholar

Xanthopoulos, P., & Razzaghi, T. (2014). A weighted support vector machine method for control chart pattern recognition. Computers and Industrial Engineering, 70, 134-149. doi: 10.1016/j.cie.2014.01.014 Open DOISearch in Google Scholar

Yang, X., Song, Q., & Wang, Y. (2007). A weighted support vector machine for data classification. International Journal of Pattern Recognition and Artificial Intelligence, 21(5), 961-976. doi: 10.1109/IJCNN.2005.1555965 Open DOISearch in Google Scholar

Yin, Y., Luo, H., Sa, J., & Zhang, Q. (2019). Study and application of improved level set method with prior graph cut in PCB image segmentation. Circuit World, 45(1), 55-64. doi: 10.1108/CW-03-2019-0028 Open DOISearch in Google Scholar

Zakaria, S. S., Amir, A., Yaakob, N., & Nazemi, S. (2020). Automated Detection of Printed Circuit Boards (PCB) Defects by Using Machine Learning in Electronic Manufacturing: Current Approaches. Materials Science and Engineering, 767. doi: 10.1088/1757-899X/767/1/012064 Open DOISearch in Google Scholar

Zhang, C., Chen, X., Chen, M., Chen, S.-C., & Shyu, M.-L. (2005). A multiple instance learning approach for content-based image retrieval using one-class support vector machine. Proceedings of the IEEE International Conference on Multimedia and Expo (ICME ‘05), 1142-1145. doi: 10.1109/ICME.2005.1521628 Open DOISearch in Google Scholar

Zhang, L., Lin, F., & Zhang, B. (2001). Support vector machine learning for image retrieval, Proceedings of the IEEE International Conference on Image Processing (ICIP ‘01), 2, 721-724. doi: 10.1109/ICIP.2001.958595 Open DOISearch in Google Scholar