Open Access

Critical Evaluation into the practical utility of the Design of Experiments


Cite

Andersson, P. M., Lundstedt, T. & Abramo, L. (1996). Synthesis and optimisation of 1-pyrrolemethane sulfonate by means of experimental design. Journal of Chemometrics, 10, 379-384.10.1002/(SICI)1099-128X(199609)10:5/6<379::AID-CEM463>3.0.CO;2-9 Search in Google Scholar

Antony, J. (2014). Some Useful and Practical Tips for Making Your Industrial Experiments Successful. In J. Antony (Ed.), Design of Experiments for Engineers and Scientists. Second Edition (pp. 113-123). Elsevier. doi: 10.1016/B978-0-08-099417-8.00008-010.1016/B978-0-08-099417-8.00008-0 Search in Google Scholar

Antony, J., & Roy, R. K. (1999). Improving the process quality using statistical Design of experiments: A case study. Quality Assurance, 6, 87-95.10.1080/105294199277888 Search in Google Scholar

Arnoldsson, K. C., & Kaufmann, P. (1994). Lipid class analysis by normal phase high performance liquid chromatography, development and optimisation using multivariate methods. Chromatographia, 38, 317-324.10.1007/BF02269774 Search in Google Scholar

Beijersten, I., & Westerlund, D. (1995). Derivatisation Of Dipeptides With 4-Fluoro-7-Nitro2,1,3 Benzoxadiazole For Laser-Induced Fluorescence And Separation By Micellar Electrokinetic Chromatography. Journal of Chromatography, 716, 389-399.10.1016/0021-9673(95)00716-Z Search in Google Scholar

Bisgaard, S. (1991). Teaching Statistics to Engineers. The American Statistician, 45(4), 274-283.10.1080/00031305.1991.10475820 Search in Google Scholar

Bisgaard, S. (1992). Industrial use of statistically designed experiments: Case study references and some historical anecdotes. Quality Engineering, 4, 547-562.10.1080/08982119208918936 Search in Google Scholar

Box G. E. P., Bisgaard, S., & Fung, C. (1988). An explanation and critique of Taguchi’s contributions to quality engineering. Quality and Reliability Engineering International, 4, 123-131.10.1002/qre.4680040207 Search in Google Scholar

Box, G. E. P. (1988). Signal-to-noise ratios, performance criteria, and transformation. Technometrics, 30, 1-40.10.1080/00401706.1988.10488313 Search in Google Scholar

Box, G. E. P. (2001). Statistics for discovery. Journal of Applied Statistics, 28(3-4), 285-299.10.1080/02664760120034036 Search in Google Scholar

Box, G. E. P., Hunter, W. G. J., & Hunter, S. (1987). Statistics for experimenters: an introduction to Design, Search in Google Scholar

Brady, J. E., & Allen, T. T. (2006). Six Sigma literature: A review and agenda for future research. Quality and Reliability Engineering International, 22, 335-367.10.1002/qre.769 Search in Google Scholar

Bucher, R. A., & Loos, A. C. (1994). Parametric statistical analysis of electrostatic powder prepregging. Journal of Advanced Materials, 25, 44-50. Search in Google Scholar

Bzik, T. J., Henderson, P. B., & Hobbs, J. P. (1998). Increasing the precision and accuracy of top loading balances: Application of experimental design. Analytical Chemistry, 70, 58-63.10.1021/ac970348l Search in Google Scholar

Carlson, A. D., Hofer, J. D., & Riggin, R. M. (1997). Development of an optimised peptide map for recombinant activated human protein c by means of an experimental design strategy. Analytica Chimica Acta, 352, 221-230.10.1016/S0003-2670(97)00287-0 Search in Google Scholar

Chapin, S. F. (1950). Research note on randomisation in a social experiment. Science, 112, 760-761.10.1126/science.112.2921.760.a Search in Google Scholar

Chen, H. C. (1996). Optimising the concentrations of carbon, nitrogen and phosphorus in a citric acid fermentation with response surface method. Food Biotechnology, 10, 13-27.10.1080/08905439609549898 Search in Google Scholar

Czitrom, V. (1999). One factor at a time versus Designed Experiments. The American Statistician, 53(2), 126-131.10.1080/00031305.1999.10474445 Search in Google Scholar

data analysis, and model building. New York: Wiley. Search in Google Scholar

Davim, J. P. (Ed.). (2016). Design of Experiments in Production Engineering. Springer International Publishing.10.1007/978-3-319-23838-8 Search in Google Scholar

Davis, B. L., Cavanagh, P. R., Sommer, H. J., & Wu, G. (1996). Ground reaction forces during locomotion in simulated microgravity. Aviation Space and Environmental Medicine, 67, 235-242. Search in Google Scholar

Durakovic, B. (2017). Design of Experiments Application, Concepts, Examples: State of the Art. Periodicals of Engineering and Natural Sciences, 5(3), 421-439. doi: 10.21533/pen10.21533/pen Search in Google Scholar

Durakovic, B., & Torlak, M. (2017). Simulation and experimental validation of phase change material and water used as heat storage medium in window applications. Journal of Materials and Environmental Science, 8(5), 1837-1746. Search in Google Scholar

Fisher, R. A. (1926). The arrangement of field experiments. Journal of the Ministry of Agriculture of Great Britain, 33, 503-513. Search in Google Scholar

Gardner, R., Bieker, J., Elwell, S., Thalman, R., & Rivera, E. (2000). Solving tough semiconductor manufacturing problems using data mining. In Proceedings of IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, 46-55.10.1109/ASMC.2000.902557 Search in Google Scholar

Goh, T. N. (2002). The role of statistical Design of Experiments in Six Sigma: Perspectives of a practitioner. Quality Engineering, 14(4), 659-671.10.1081/QEN-120003565 Search in Google Scholar

Gremyr, I., Arvidsson, M., & Johansson, P. (2003). Robust Design Methodology: Status in the Swedish Manufacturing Industry. Qualitative Reliability Engineering International, 19, 285-293.10.1002/qre.584 Search in Google Scholar

Hahn, G. J. (2005). Six Sigma: 20 Key Lessons Learned. Quality and Reliability Engineering International, 21, 225-233.10.1002/qre.636 Search in Google Scholar

Hecht, E. S., Oberg, A. L., & Muddiman, D. C. (2016). Optimising Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments. Journal of American Society of Mass Spectrometry, 27, 767-785.10.1007/s13361-016-1344-x484169426951559 Search in Google Scholar

Hibbert, D. B. (2012). Experimental design in chromatography: a tutorial review. Journal of Chromatography, 910, 2-13.10.1016/j.jchromb.2012.01.020 Search in Google Scholar

Ilzarbe, L., Álvarez, M. J., Viles, E., & Tanco, M. (2008). Practical applications of design of experiments in the field of engineering: a bibliographical review. Qualitative Reliability Engineering International, 24, 417-428.10.1002/qre.909 Search in Google Scholar

Kackar, R. N., & Shoemaker, A. C. (2021). Robust Design: A cost-effective method for improving manufacturing processes. AT&T Technical Journal, 65, 39-50.10.1002/j.1538-7305.1986.tb00292.x Search in Google Scholar

Kenett, R. S., & Steinberg, D. M. (2006). New frontiers in the Design of experiments. Quality Progress, 39(8), 61-65. Search in Google Scholar

Lye, L. M. (2005). Tools and toys for teaching design of experiments methodology. In 33rd Annual General Conference of the Canada, Toronto, Ontario, Canada. Search in Google Scholar

Mager, P. P. (1997). How design statistics concepts can improve experimentation in medicinal chemistry. Medicinal Research Reviews, 17, 453-475.10.1002/(SICI)1098-1128(199709)17:5<453::AID-MED2>3.0.CO;2-T Search in Google Scholar

Montgomery, D. C. (2017). Design and Analysis of Experiments. John Wiley & Sons, Inc. Search in Google Scholar

Myers, R. H., Montgomery, D. C., Vining, G. G., Borror, C. M., & Kowalski, S. M. (2004). Response surface methodology: A retrospective and literature survey. Journal of Quality Technology, 36(1), 53-77.10.1080/00224065.2004.11980252 Search in Google Scholar

Nair, V. N. (1992). Taguchi’s parameter design: A panel discussion. Technometrics, 34, 127-161.10.1080/00401706.1992.10484904 Search in Google Scholar

Okatia, V., Behzadmehra, A., & Farsad, S. (2016). Analysis of a solar desalinator (humidification–dehumidification cycle) including a compound system consisting of a solar humidifier and subsurface condenser using DoE. Desalination, 397, 9-21.10.1016/j.desal.2016.06.010 Search in Google Scholar

Paulo, F., & Santos, L. (2017). Design of experiments for microencapsulation applications: A review. Materials Science and Engineering: C, 77(August), 1327-1340.10.1016/j.msec.2017.03.219 Search in Google Scholar

Puente-Massaguer, E., Lecina, M., & Gòdia, F. (2020). Integrating nanoparticle quantification and statistical design of experiments for efficient HIV-1 virus-like particle production in High Five cells. Applied Microbiology and Biotechnology, 104, 1569-1582. doi: 10.1007/s00253-019-10319-x10.1007/s00253-019-10319-x Search in Google Scholar

Robinson, T. J., Borror, C. M., & Myers, R.H. (2004). Robust parameter design: A review. Quality and Reliability Engineering International, 20, 81-101.10.1002/qre.602 Search in Google Scholar

Schlueter, A., & Geyer, P. (2018). Linking BIM and Design of Experiments to balance architectural and technical design factors for energy performance. Automation in Construction, 86(February), 33-43.10.1016/j.autcon.2017.10.021 Search in Google Scholar

Setamanit, S. (2018). Evaluation of outsourcing transportation contract using simulation and design of experiment. Polish Journal of Management Studies, 18(2), 300-310.10.17512/pjms.2018.18.2.24 Search in Google Scholar

Sukthomya, W., & Tannock, J. (2005). The optimisation of neural network parameters using Taguchi’s design of experiments approach: an application in manufacturing process modelling. Neural Computing and Applications, 14, 337-344. doi: 10.1007/s00521-005-0470-310.1007/s00521-005-0470-3 Search in Google Scholar

Tukey, J. W. (1947). Non-parametric estimation II. Statistically equivalent blocks and tolerance regions – the continuous case. Annals of Mathematical Statistics, 18, 529-539.10.1214/aoms/1177730343 Search in Google Scholar

Wald, A. (1943). An extension of Wilks’ method for setting tolerance limits. Annals of Mathematical Statistics, 14, 45-55.10.1214/aoms/1177731491 Search in Google Scholar

Wesling, P., & Emamjomeh, A. (1994). T.A.B. Innerlead bond process characterisation for single point laser bonding. IEEE Transactions on Components Packaging & amp. Manufacturing Technology Part A, 17, 142-148.10.1109/95.296381 Search in Google Scholar

Yang, G. C. C., & Tsai, C. M. (1998). A study on heavy metal extractability and subsequent recovery by electrolysis for a municipal incinerator fly ash. Journal of Hazardous Materials, 58, 103-120.10.1016/S0304-3894(97)00124-6 Search in Google Scholar

Yip, H. M., Wang, Z., Navarro-Alarcon, D., Li, P., Cheung, T. H., Greiffenhagen, Ch., & Liu, Y. (2020). A collaborative robotic uterine positioning system for laparoscopic hysterectomy: Design and experiments. International Journal of Medical Robotics and Computer Assisted Surgery, 16(4), e2103. doi: 10.1002/rcs.210310.1002/rcs.210332163664 Search in Google Scholar

Yondo, R., Andrés, E., & Valero, E. (2018). A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses. Progress in Aerospace Sciences, 96, 23-61. doi: 10.1016/j.paerosci.2017.11.00310.1016/j.paerosci.2017.11.003 Search in Google Scholar

Yoo, K. S. (2020). Application of Statistical Design of Experiments in the Field of Chemical Engineering: A Bibliographical Review. The Korean Society of Industrial and Engineering Chemistry, 31(2), 138-146. doi: 10.14478/ACE.2020.1018 Search in Google Scholar

Yu, P., Low, M. Y., & Zhou, W. (2018). Design of experiments and regression modelling in food flavour and sensory analysis: A review. Trends in Food Science & Technology, 71(January), 202-215.10.1016/j.tifs.2017.11.013 Search in Google Scholar

Zheng, H., Clausen, M. R., Dalsgaard, T. K., Mortensen, G., & Bertram, H. C. (2013). Time-saving design of experiment protocol for optimisation of LC-MS data processing in metabolomic approaches. Analytical Chemistry, 85, 7109-7116.10.1021/ac402032523841659 Search in Google Scholar