1. bookVolume 40 (2021): Issue 2 (June 2021)
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Temporal Aspect of the Terrestrial Invertebrate Response to Moisture Dynamic in Technosols formed after Reclamation at a Post-Mining Site in Ukrainian Steppe Drylands

Published Online: 17 Jul 2021
Volume & Issue: Volume 40 (2021) - Issue 2 (June 2021)
Page range: 178 - 188
Received: 19 Sep 2019
Accepted: 13 Feb 2020
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year

Different approaches were applied to assess soil moisture optima and tolerance of the ecological niche temporal projection of terrestrial invertebrates within an experimental polygon created to investigate the reclamation processes after deep underground hard-rock mining in the Ukrainian steppe drylands. Sampling was carried out in 2013–2015 on a variant of artificial soil (technosols). To investigate the spatiotemporal variation in the abundance, species richness and species composition of invertebrate assemblages the animals were sampled using pitfall traps. The readily available water for plants, precipitation, wind speed, atmospheric temperature, atmospheric humidity, and atmospheric pressure were used as environmental predictors. The two-dimension geographic coordinates of the sampling locations were used to generate a set of orthogonal eigenvector-based spatial variables. Time series of sampling dates were used to generate a set of orthogonal eigenvector-based temporal variables. Weighted averaging, generalized linear mixed models, Huisman-Olff-Fresco models expanded by Jansen-Oksanen, correspondence analysis, and constrained correspondence analysis were used to estimate soil moisture species optima and tolerance. The moisture content in the technosols was revealed to be the most important factor determining the temporal dynamics of terrestrial invertebrate community in conditions of semi-arid climate and the ecosystem which formed as a result of the reclamation process. The species response to the soil water content is affected not only by the soil water content but also by the complex of the other environmental, temporal, and spatial factors. The effect of other factors on the species response must be extracted previously to find real estimations of the species optima and tolerance.


Angeler, D.G., Drakare, S. & Johnson R.K. (2011). Revealing the organization of complex adaptive systems through multivariate time series modeling. Ecology and Society, 16(3), 5. https://www.jstor.org/stable/26268950.10.5751/ES-04175-160305 Search in Google Scholar

Bertness, M. & Callaway R.M. (1994). Positive interactions in communities. Trends Ecol. Evol., 9(5), 191–193. DOI: 10.1016/0169-5347(94)90088-4.10.1016/0169-5347(94)90088-4 Search in Google Scholar

Borcard, D. & Legendre P. (2002). All–scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model., 153, 51–68. DOI: 10.1016/S0304-3800(01)00501-4.10.1016/S0304-3800(01)00501-4 Search in Google Scholar

Bowker, M.A., Soliveres, S. & Maestre F.T. (2010). Competition increases with abiotic stress and regulates the diversity of biological soil crusts. J. Ecol., 98(3), 551–560. DOI: 10.1111/j.1365-2745.2010.01647.x.10.1111/j.1365-2745.2010.01647.x Search in Google Scholar

Brandle, M., Durka, W., Krug, H. & Brandl R. (2003). The assembly of local communities: plants and birds in non-reclaimed mining sites. Ecography, 26, 652−660. DOI: 10.1034/j.1600-0587.2003.03513.x.10.1034/j.1600-0587.2003.03513.x Search in Google Scholar

Brown, J.H. (1984). On the relationship between abundance and distribution of species. Am. Nat., 124, 255–279. DOI: 10.1086/284267.10.1086/284267 Search in Google Scholar

Brown, J.H. (1999). Macroecology: progress and prospect. Oikos, 87, 3–14. DOI: 10.2307/3546991.10.2307/3546991 Search in Google Scholar

Buchori, D., Rizali, A., Rahayu, G.A. & Mansur I. (2018). Insect diversity in post-mining areas: Investigating their potential role as bioindicator of reclamation success. Biodiversitas, 19, 1696–1702. DOI: 10.13057/biodiv/d190515.10.13057/biodiv/d190515 Search in Google Scholar

Chang, L.-W., Zelený, D., Li, C.-F., Chiu, S.-T. & Hsieh C.-F. (2013). Better environmental data may reverse conclusions about niche-and dispersal-based processes in community assembly. Ecology, 94, 2145–2151. DOI: 10.1890/12-2053.1.10.1890/12-2053.124358699 Search in Google Scholar

Chase, J.M., Leibold, M.A., Downing, A.L. & Shurin J.B. (2000). The effects of productivity, herbivory, and plant species turnover in grassland food webs. Ecology, 81(9), 2485–2497. DOI: 10.1890/0012-9658(2000)081[2485:TEOPHA]2.0.CO;2. Search in Google Scholar

Chase, J.M. & Myers J.A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. Lond. B Biol. Sci., 366, 2351–2363. DOI: 10.1098/rstb.2011.0063.10.1098/rstb.2011.0063313043321768151 Search in Google Scholar

Collins, S.L., Belnap, J., Grimm, N.B., Rudgers, J.A., Dahm, C.N., D’Odorico, P., Litvak, M., Natvig, D.O., Peters, D.C., Pockman, W.T., Sinsabaugh, R.L. & Wolf B.O. (2014). A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annual Review of Ecology, Evolution, and Systematics, 45, 397–419. DOI: 10.1146/annurev-ecolsys-120213-091650.10.1146/annurev-ecolsys-120213-091650 Search in Google Scholar

Colwell, R.K. & Futuyma D.J. (1971). Measurement of niche breadth and overlap. Ecology, 52, 567–576. DOI: 10.2307/1934144.10.2307/193414428973805 Search in Google Scholar

Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett., 8, 1175–1182. DOI: 10.1111/j.1461-0248.2005.00820.x.10.1111/j.1461-0248.2005.00820.x21352441 Search in Google Scholar

Curtis, J.T. & McIntosh R.P. (1951). An Upland Forest Continuum in the Prairie-Forest Border Region of Wisconsin. Ecology, 32, 476–496. DOI: 10.2307/1931725.10.2307/1931725 Search in Google Scholar

David, J.F. & Handa I.T. (2010). The ecology of saprophagus macroarthro-pods (millipedes, woodlice) in the context of global change. Biol. Rev., 85(4), 881−895. DOI: 10.1111/j.1469-185X.2010.00138.x.10.1111/j.1469-185X.2010.00138.x20412191 Search in Google Scholar

Desender, K., Ervinck, A. & Tack G. (1999). Beetle diversity and historical ecology of woodlands in Flanders. Belg. J. Zool., 129(1), 139–155. Search in Google Scholar

Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., Villéger, S., & Mouquet N. (2010). Defining and measuring ecological specialization. J. Appl. Ecol., 47, 15–25. DOI: 10.1111/j.1365-2664.2009.01744.x.10.1111/j.1365-2664.2009.01744.x Search in Google Scholar

Dray, S., Legendre, P. & Peres-Neto P. (2006). Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbours matrices (PCNM). Ecol. Model., 196, 483−493. DOI: 10.1016/j.ecolmodel.2006. Search in Google Scholar

Dray, S., Pélissier, R., Couteron, P., Fortin, M.-J., Legendre, P., Peres-Neto, P.R., Bellier, E., Bivand, R., Blanchet, F.G., De Cáceres, M., Dufour, A.-B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J. & Wagner H.H. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr., 82, 257–275. DOI: 10.1890/11-1183.1.10.1890/11-1183.1 Search in Google Scholar

Dvorský, M., Macek, M., Kopecký, M., Wild, J. & Doležal J. (2017). Niche asymmetry of vascular plants increases with elevation. J. Biogeogr., 44(6), 1418–1425. DOI: 10.1111/jbi.13001.10.1111/jbi.13001 Search in Google Scholar

Entling, W., Schmidt, M.H., Bacher, S., Brandl, R. & Nentwig W. (2007). Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob. Ecol. Biogeogr., 16, 440–448. DOI: 10.1111/j.1466-8238.2006.00305.x.10.1111/j.1466-8238.2006.00305.x Search in Google Scholar

Gaston, K.J., Blackburn, T.M. & Lawton J.H. (1997). Interspecific abundance-range size relationships: an appraisal of mechanisms. J. Anim. Ecol., 66(44), 579–601. DOI: 10.2307/5951.10.2307/5951 Search in Google Scholar

Gauch, H.G. & Whittaker R.H. (1972). Coenocline simulation. Ecology, 53(3), 446–451. DOI: 10.2307/1934231.10.2307/1934231 Search in Google Scholar

Ge, B., Daizhen, Z., Jun, C., Huabin, Z., Chunlin, Z. & Boping T. (2014). Biodiversity variations of soil macrofauna communitiesin forestsina reclaimed coastwith different diked history. Pak. J. Zool., 46(4), 1053–1059. Search in Google Scholar

Gregory, R.D. & Gaston K.J. (2000). Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos, 88, 515–526. DOI: 10.1034/j.1600-0706.2000.880307.x.10.1034/j.1600-0706.2000.880307.x Search in Google Scholar

Hendrychova, M. (2008). Reclamation success in post-mining landscapes in the Czech Republic: a review of pedological and biological studies. Journal of Landscape Studies, 1, 63–78. Search in Google Scholar

Hendrychova, M., Salek, M., Tajovsky, K. & Reho M. (2011). Soil properties and species richness of invertebrates on afforested sites after brown coal mining. Restor. Ecol., 20 (5), 561–567. DOI: 10.1111/j.1526-100X.2011.00841.x.10.1111/j.1526-100X.2011.00841.x Search in Google Scholar

Hildmann, E. & Wunsche M. (1996). Lignite mining and its after-effects on the central German landscape. Water Air Soil Pollut., (91), 79–87. DOI: 10.1007/BF00280924.10.1007/BF00280924 Search in Google Scholar

Hill, M.O. (1973). Reciprocal averaging: an eigenvector method of ordination. J. Ecol., 61(1), 237–249. DOI: 10.2307/2258931.10.2307/2258931 Search in Google Scholar

Hodecek, J., Kuras, T., Sipos, J. & Dolny A. (2015). Post-industrial areas as successional habitats: long-term changes of functional diversity in beetle communities. Basic and Applied Ecology, 16(7), 629–640. DOI: 10.1016/j. baae.2015.06.004. Search in Google Scholar

Hodecek, J., Kuras, T., Sipos, J. & Dolny A. (2016). Role of reclamation in the formation of functional structure of beetle communities: A different approach to restoration. Ecological Engineering, 94, 537−544. DOI: 10.1016/j.ecoleng.2016. Search in Google Scholar

Huisman, J., Olff, H. & Fresco L.F.M. (1993). A hierarchical set of models for species response analysis. J. Veg. Sci., 4(1), 37–46. DOI: 10.2307/3235732.10.2307/3235732 Search in Google Scholar

Hutchinson, G.E. (1957). Concluding remarks. Cold Spring Harbour Symp. Quant. Biol., 22, 415–427. DOI: 10.1101/SQB.1957. Search in Google Scholar

Inbar, M., Doostdar, H. & Mayer R.T. (2001). Suitability of stressed and vigorous plants to various insect herbivores. Oikos, 94(2), 228–235. DOI: 10.1034/j.1600-0706.2001.940203.x.10.1034/j.1600-0706.2001.940203.x Search in Google Scholar

Izakovičová, Z., Miklós, L., Miklósová, V. & Raniak A. (2020). Integrated approach to the management of the landscape for the implementation of the Danube Strategy. Ekológia (Bratislava), 39(4), 357−379. DOI: 10.2478/eko-2020-0029.10.2478/eko-2020-0029 Search in Google Scholar

Jamil, T. & ter Braak C.J.F. (2013). Generalized linear mixed models can detect unimodal species-environment relationships. PeerJ, 1:e95. DOI: 10.7717/peerj.95.10.7717/peerj.95 Search in Google Scholar

Jansen, F. & Oksanen J. (2013). How to model species responses along ecological gradients – Huisman–Olff–Fresco models revisited. J. Veg. Sci., 24, 1108–1117. DOI: 10.1111/jvs.12050.10.1111/jvs.12050 Search in Google Scholar

Klimkina, I., Kharytonov, M. & Zhukov O. (2018). Trend analysis of water-soluble salts vertical migration in technogenic edaphotops of reclaimed mine dumps in Western Donbass (Ukraine). Journal of Environmental Research, Engineering and Management, 74(2), 82–93. DOI: 10.5755/j01. erem.74.2.19940. Search in Google Scholar

Knapp, M., Seidl, M., Knappová, J., Macek, M. & Saska P. (2019). Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Scientific Reports, 9(1), 8967. DOI: 10.1038/s41598-019-45378-7.10.1038/s41598-019-45378-7 Search in Google Scholar

Kohn, A.J. (1968). Microhabitats, abundance, and food of Conus in the Maldive and Chagos Islands. Ecology, 49, 1046–1061. DOI: 10.2307/1934489.10.2307/1934489 Search in Google Scholar

Kunah, O.M., Zelenko, Y.V., Fedushko, M.P., Babchenko, A.V., Sirovatko, V.O. & Zhukov O.V. (2019). The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin. Biosystems Diversity, 27(2), 156–162. DOI: 10.15421/011921.10.15421/011921 Search in Google Scholar

Kunakh, O.N., Kramarenko, S.S., Zhukov, A.V., Zadorozhnaya, G.A. & Kramarenko A.S. (2018). Intra-population spatial structure of the land snail Vallonia pulchella (Müller, 1774) (Gastropoda; Pulmonata; Valloniidae). Ruthenica, 28 (3), 91–99.10.35885/ruthenica.2018.28(3).1 Search in Google Scholar

Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O.W. & Dhillion S. (1997). Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Science, 33, 159−193. Search in Google Scholar

Lawton, J.H. (1999). Are there general laws in ecology? Oikos, 84, 177–192. DOI: 10.2307/3546712.10.2307/3546712 Search in Google Scholar

Legendre, P. & Birks H.J.B. (2012). From classical to canonical ordination. In H.J.B. Birks, A.F. Lotter, S. Juggins & J.P. Smol (Eds.), Tracking environmental change using lake sediments: Data handling and numerical techniques (pp. 201–248). Dordrecht: Springer. Search in Google Scholar

Madej, G. & Kozub M. (2014). Possibilities of using soil microarthropods, with emphasis on mites (Arachnida, Acari, Mesostigmata), in assessment of successional stages in a reclaimed coal mine dump (Pszów, S Poland). Biological Letters, 51(1), 19–36. DOI: 10.1515/biolet-2015-0003.10.1515/biolet-2015-0003 Search in Google Scholar

Maraun, M., Martens, H., Migge, S., Theenhaus, A. & Scheu S. (2003). Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur. J. Soil Biol., 39, 85–95. DOI: 10.1016/S1164-5563(03)00006-2.10.1016/S1164-5563(03)00006-2 Search in Google Scholar

Michaelis, J. & Diekmann M.R. (2017). Biased niches – Species response curves and niche attributes from Huisman-Olff-Fresco models change with differing species prevalence and frequency. PLoS ONE, 12(8), e0183152. DOI: 10.1371/journal.pone.0183152.10.1371/journal.pone.0183152556518428827833 Search in Google Scholar

Minchin, P.R. (1987). An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio, 69(1–3), 89–107. DOI: 10.1007/BF00038690.10.1007/BF00038690 Search in Google Scholar

Morón-Ríos, A., Rodríguez, M.Á., Pérez-Camacho, L. & Rebollo S. (2010). Effects of seasonal grazing and precipitation regime on the soil macroin-vertebrates of a Mediterranean old-field. Eur. J. Soil Biol., 46(2), 91–96. DOI: 10.1016/j.ejsobi.2009. Search in Google Scholar

Okie, J.G., Van Horn, D.J., Storch, D., Barrett, J.E., Gooseff, M.N., Kopsova, L. & Takacs-Vesbach C.D. (2015). Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci., 282, 20142630. DOI: 10.1098/rspb.2014.2630.10.1098/rspb.2014.2630459043226019154 Search in Google Scholar

Paoletti, M.G., Osler, G.H.R., Kinnear, A., Black, D.J., Thomson, L.J., Tsitsilas, A., Sharley, D., Judd, S., Neville, P. & D,inca A. (2007). Detritivores as indicators of landscape stress and soil degradation. Austr. J. Exp. Agric., 47(4), 412−423. DOI: 10.1071/EA05297.10.1071/EA05297 Search in Google Scholar

Pontegnie, M., du Bus de Warnaffe, G. & Lebruna Ph. (2005). Impacts of silvi-cultural practices on the structure of hemi-edaphic macrofauna community. Pedobiologia, 49(3), 199–210. DOI: 10.1016/j.pedobi.2004. Search in Google Scholar

Price, P.W. (1991). The plant vigor hypothesis and herbivore attack. Oikos, 62 (2), 244–251. DOI: 10.2307/3545270.10.2307/3545270 Search in Google Scholar

Purse, B.V., Gregory, S.J., Harding, P. & Roy H.E. (2012). Habitat use governs distribution patterns of saprophagous (litter-transforming) macroarthropods – a case study of British woodlice (Isopoda: Oniscidea). Eur. J. Entomol., 109, 543–552. DOI: 10.14411/eje.2012.068.10.14411/eje.2012.068 Search in Google Scholar

R Core Team (2019). A language and environment for statistical computing. In R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. https://www.R-project.org Search in Google Scholar

Rehor, M., Lang, T. & Eis M. (2006). Application of new methods in solving current reclamation issues of Severoceske doly, a.s. localities. World of Surface Mining, 6, 383–386. Search in Google Scholar

Reynolds, J.F., Smith, D.M.S., Lambin, E.F., Turner, B.L., Mortimore, M., Batterbury, S.P., Downing, T.E., Dowlatabadi, H., Fernández, R.J., Herrick, J.E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F.T., Ayarza, M. & Walker B. (2007). Global desertification: building a science for dryland development. Science, 316(5826), 847–51. DOI: 10.1126/science.1131634.10.1126/science.113163417495163 Search in Google Scholar

Schoener, T.W. (1974). The compression hypothesis and temporal resource partitioning. Proc. Nat. Acad. Sci., 71(10), 4169−4172. DOI: 10.1073/pnas.71.10.4169.10.1073/pnas.71.10.416943435116592190 Search in Google Scholar

Schwinning, S. & Sala O.E. (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141(2), 211–220. DOI: 10.1007/s00442-004-1520-8.10.1007/s00442-004-1520-8 Search in Google Scholar

Sklenicka, P., Prikryl, I., Svoboda, I. & Lhota T. (2004). Non-productive principles of landscape rehabilitation after long-term opencast mining in north-west Bohemia. Journal of the South African Institute of Mining and Metallurgy, 104, 83–88. Search in Google Scholar

Šmilauer, P. & Lepš J. (2014). Multivariate Analysis of Ecological Data using CANOCO 5. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9781139627061.10.1017/CBO9781139627061 Search in Google Scholar

Tarjuelo, R., Morales, M. B., Arroyo, B., Mañosa, S., Bota, G., Casas, F. & Traba J. (2017). Intraspecific and interspecific competition induces density-dependent habitat niche shifts in an endangered steppe bird. Ecology and Evolution, 7(22), 9720–9730. DOI: 10.1002/ece3.3444.10.1002/ece3.3444 Search in Google Scholar

ter Braak C.J.F. (1985). Correspondence analysis of incidence and abundance data: Properties in terms of a unimodal response model. Biometrics, 41(4), 859–873. DOI: 10.2307/2530959.10.2307/2530959 Search in Google Scholar

ter Braak, C.J.F. & Looman C.W.N. (1986). Weighted averaging, logistic regression and the Gaussian response model. Vegetatio, 65, 3–11. DOI: 10.1007/BF00032121.10.1007/BF00032121 Search in Google Scholar

ter Braak C.J.F. & Prentice I.C. (1988). A theory of gradient analysis. Adv. Ecol. Res., 18, 271–317. DOI: 10.1016/S0065-2504(08)60183-X.10.1016/S0065-2504(08)60183-X Search in Google Scholar

ter Braak, C.J.F. & Smilauer P. (2015). Topics in constrained and unconstrained ordination. Plant Ecol., 216(5), 683–696. DOI: 10.1007/s11258-014-0356-5.10.1007/s11258-014-0356-5 Search in Google Scholar

Tokeshi, M. (1999). Species coexistence: ecological and evolutionary perspectives. London: Blackwell Science. Search in Google Scholar

Trotter, R.T., Cobb, N.S. & Whitham T.G. (2008). Arthropod community diversity and trophic structure: a comparison between extremes of plant stress. Ecol. Entom., 33, 1−11. DOI: 10.1111/j.1365-2311.2007.00941.x.10.1111/j.1365-2311.2007.00941.x Search in Google Scholar

White, T.C.R. (1976). Weather, food, and plagues of locusts. Oecologia, 22(2), 119 – 134. DOI: 10.1007/BF00344712.10.1007/BF0034471228308651 Search in Google Scholar

White, T.C.R. (1984). The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia, 63(1), 90–105. DOI: 10.1007/BF00379790.10.1007/BF0037979028311171 Search in Google Scholar

Yorkina, N., Maslikova, K., Kunah, O. & Zhukov O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17, 29–45. www.biotaxa.org/em10.37828/em.2018.17.5 Search in Google Scholar

Yorkina, N., Zhukov, O. & Chromysheva O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekológia (Bratislava), 38(1), 1–10. DOI: 10.2478/eko-2019-0001.10.2478/eko-2019-0001 Search in Google Scholar

Zadorozhnaya, G.A., Andrusevych, K.V. & Zhukov O.V. (2018). Soil heterogeneity after recultivation: ecological aspect. Folia Oecologica, 45 (1), 46–52. DOI: 10.2478/foecol-2018-0005.10.2478/foecol-2018-0005 Search in Google Scholar

Zhenqi, H., Peijun, W. & Jing L. (2012). Ecological restoration of abandoned Mine land in China. Journal of Resources and Ecology, 3(4), 289–296. DOI: 10.5814/j.issn.1674-764x.2012. Search in Google Scholar

Zhukov, A. & Gadorozhnaya G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava), 35, 263–278. DOI: 10.1515/eko-2016-0021.10.1515/eko-2016-0021 Search in Google Scholar

Zhukov, O., Kunah, O., Dubinina, Y. & Novikova V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37(3), 301–327. DOI: 10.2478/eko-2018-0023.10.2478/eko-2018-0023 Search in Google Scholar

Zhukov, O.V. & Maslikova K.P. (2018). The dependence of the technosols models functional properties from the primary stratigraphy designs. Journal of Geology, Geography and Geoecology, 27(2), 399−407. DOI: 10.15421/111864.10.15421/111864 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo