1. bookVolume 40 (2021): Issue 1 (March 2021)
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Urban Green Areas and Woody Plant Composition: Dwelling Space Quality Factor in the Klokočina Housing Estate

Published Online: 18 Apr 2021
Page range: 80 - 90
Received: 10 Jan 2020
Accepted: 19 Feb 2020
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year

The environment of a city is influenced by global and local climate changes, pollution load from transport, industry and local heat sources. Green spaces as part of the urban green infrastructure fulfil multiple ecosystem services and improve the environmental and residential quality of a city. The level of positive effects of green spaces depends on their area, distribution within the city and the proportion of trees. The aim of the paper was to evaluate land cover structure in a selected segment of the housing estate Klokočina in Nitra, Slovakia. The evaluation focused on the share of biologically active and inactive surfaces, as well as the parameters of woody plant structure in green spaces. Green areas account for 58.70%, while built-up areas, parking lots and roads cover in total 41.30%. Biologically inactive anthropogenic horizontal and of building envelope areas represent 67.30%. Biologically active green areas represent 32.70%. The share of areas with tree crown overlap on horizontal areas is 20.82%, other areas are paved surfaces or grassland. We calculated the indices of the quality of green spaces from the individual categories of areas: proportional green area index (PGAI), effective green area index (EGAI) and tree shade index (TSI). The tree species composition consists of 36 deciduous and 11 coniferous tree species, and 20 shrub species. We evaluated the biometric traits of trees as the tree height, crown width, stem girth and tree vitality class (TVC). The correlations between tree traits were statistically tested with a significant result. In the group of biologically active areas of greenery, we propose to increase the proportion of trees, to establish more natural lawns and xerophyte flower beds. In the category of inactive areas, we propose the reconstruction of parking lots to grass paved surfaces.


Anguluri, R. & Narayanan P. (2017). Role of green space in urban planning: Outlook towards smart cities. Urban Forestry and Urban Greenning, 25, 58− 65. DOI: 10.1016/j.ufug.2017.04.007.Search in Google Scholar

Bihuňová, M., Halajová, D., Tóth, A. & Štrba P. (2017). Assessment of green infrastructure in the cadastral area of Šaľa. Journal of Landscape Management, 8(1), 58−74.Search in Google Scholar

Bowler, D.F., Buyung-Ali, J., Knight, T.M. & Pullin A.S. (2010). Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc. Urban Plann., 97, 147−155. DOI: 10.1016/j.landurb-plan.2010.05.006.Search in Google Scholar

Chen, H., Gu, I., Li, J. & Ge C. (2009). Analysis on relations between the pattern of urban forests and heat Island effect in Chengoen. Acta Ecologica Sinica, 29, 4865−4874.Search in Google Scholar

Eliasson, I. & Upmanis H. (2000). Nocturnal airflow from urban parks implications for city ventilation. Theor. Appl. Clim., 66(1−2), 95−107. DOI: 10.1007/s007040070035.Search in Google Scholar

Goddard, M.A., Dougill, A. & Benton T.G. (2010). Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol., 25(2), 90−98.DOI: 10.1016/j.tree.2009.07.016.Search in Google Scholar

Gupta, K., Kumar, P., Pathan, S.K. & Sharma K.P. (2012). Urban neighbour-hood green index- A measure of green spaces in urban areas. Landsc. Urban Plann., 105, 325−335. DOI: 10.1016/j.landurbplan.2012.01.003.Search in Google Scholar

Hrubík, P., Kollár, J., Rovná, K., Tkáčová, S. & Mňahončáková E. (2011). Qualitative survey, klassification and evaluation of the healthy condition of woody plants for the purpose of garden- architectonical and landscape creation (in Slovak). Nitra: SPU.Search in Google Scholar

Jaganmohan, M., Knapp, S., Buchmann, C.M. & Schwarz N. (2016). The bigger, the better? The influence of urban green space, design on cooling effects for residential areas. J. Environ. Qual., 45, 134−145. DOI: 10.2134/jeq2015.01.0062.Search in Google Scholar

Jayasooriya, V.M., Ng, A.W.M., Muthukumaran, S. & Perera B.J.C. (2017). Green in frastructure practices for improvement of urban air quality. Urban Forestry and Urban Greening, 21, 34−47. DOI: 10.1016/j. ufug.2016.11.007.Search in Google Scholar

Juhola, S. (2018). Planning for a green city: The green factor tool. Urban Forestry and Urban Greening, 34, 254−258. DOI: 10.1016/j.ufug.2018.07.019.Search in Google Scholar

Kabisch, N., Strohbach, M., Haase, D. & Kronenberg J. (2016). Urban green space availability in European cities. Ecological Indicators, 70, 586−596. DOI: 10.1016/j.ecolind.2016.02.029.Search in Google Scholar

Klein, J. & Rózová Z. (2017). Methods of trees evaluation with the site-specific for microclimate in urban environment: the case of study Nitra (Slovakia). Ekológia (Bratislava), 36(1), 40−51. DOI: 10.1515./eko-2017-0004.Search in Google Scholar

Kong, F., Yin, H., James, P., Hutyra, L.R. & He H.S. (2014). Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landsc. Urban Plann., 128, 35−47. DOI: 10.1016/j.landurbplan.2014.04.018.Search in Google Scholar

Lee, H., Mayer, H. & Chen L. (2016). Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc. Urban Plann., 148, 37−50. DOI: 10.1016/j. landurbplan.2015.12.004.Search in Google Scholar

Majkowska, A., Kolendowicz, I., Pólrolniczak, M., Hauke, J. & Czarnecki B. (2017). The urban heat island in the city of Pozňan as derived from Landsat 5 TM. Theor. Appl. Clim., 128, 769−783. DOI: 10.1007/s00704-016-1737-6.Search in Google Scholar

Martin, P., Baudonin, J. & Gachon P. (2015). An alternative method to characterize the surface urban heat island. Int. J. Biometeorol., 59(7), 849−861. DOI: 10.1007/s00484-014-0902-9.Search in Google Scholar

McHale, M., Burke, I., Lefsky, M., Peper, P. & McPherson E. (2009). Urban forest biomass estimates. Is it important to use allometric relationships developed specifically for urban trees? Urban Ecosystems, 12, 95−113. DOI: 10.1007/s11252-009-0081-3.Search in Google Scholar

McPherson, E.G., Xiao, Q., van Doorn, N.S., Johnson, N., Albert, S. & Peper P.J. (2018). Shade factors for 149 taxa of in – leaf urban trees in the USA. Urban Forestry and Urban Greening, 31, 204−211. DOI: 10.1016/j. ufug.2018.03.001.Search in Google Scholar

Merry, K., Syri, J., Bettinger, P. & Bowker J.M. (2014). Urban tree cover change in Detroit and Atlanta, USA, 1951−2010. Cities, 41, 123−131. DOI: 10.1016/j.cities.2014.06.012.Search in Google Scholar

Niemelä, J. (2014). Ecology of urban greenspaces: The way forward in answering major research questions. Landsc. Urban Plann., 125, 298−303. DOI: 10.1016/j.landurbplan.2013.07.014.Search in Google Scholar

Nordh, H. & Østby K. (2013). Pocket parks for people- A study of park design and use. Urban Forestry and Urban Greenning, 12, 12−17. DOI: 10.1016/j. ufug.2012.11.003.Search in Google Scholar

Nowak, D.J., Grane, D.F. & Stevens J.C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening, 4(3−4), 115−123. DOI: 10.1016/j.ufug.2006.01.007.Search in Google Scholar

Nowak, D.J. & Greenfield E.J. (2012). Tree and impervious cover in the United States. Landsc. Urban Plann., 107, 21−30. DOI: 10.1016/j.landurb-plan.2012.04.005.Search in Google Scholar

Nowak, D.J., Greenfield, E.J., Hoehn, R.E. & Lapoint E. (2013). Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut., 178, 229−230. DOI: 10.1016/j.envpol.2013.03.019.Search in Google Scholar

Nowak, D.J., Hirabayashi, S., Doyle, M., McGovern, M. & Paster J. (2018). Air pollution removal by urban forests in Canada and its effect on air quality. Urban Forestry and Urban Greening, 29, 40−48. DOI: 10.1016/j. ufug.2017.10.019.Search in Google Scholar

Papangelis, G., Tombron, M., Dandon, A. & Kontos T. (2012). An urban “Green planning“ approach utilizing the weather research and forecasting (WRF) modelling system. A case study of Athens, Greece. Landsc. Urban Plann., 105, 174−183. DOI: 10.1016/j.landurbplan.2011.12.014.Search in Google Scholar

Reháčková, T. & Pauditšová E. (2006). Vegetation in urban environment (in Slovak). Bratislava: Cicero, s.r.o.Search in Google Scholar

SAS Institute Inc. (2008). SAS/Enterprise Guide 7.1. Cary. NC: SAS Institute Inc.Search in Google Scholar

Saebo, A., Borzan, Z., Ducatilion, C., Hatizstathis, A., Lagerstrom, T., Supuka, J., Garcia-Valdecantos, J.L., Reg, F. & Van Styken J. (2005). The selection of plant materials for street trees, park trees and urban woodland. In C. Konijnendijk, K. Nilsson, T. Randrup & J. Shipperijn (Eds.), Urban forest and trees: a reference book (pp. 257−280). Berlin, Heidelberg: Springer Verlag.Search in Google Scholar

Selmi, W., Weber, Ch., Riviere, E., Blond, N., Mehdi, L. & Nowak D. (2016): Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban Forestry and Urban Greening, 20, 40−48. DOI: 10.1016/ufug.2016.04.010.Search in Google Scholar

Shackleton, S., Chinyimba, A., Hebinck, P., Shackleton, Ch. & Kaoma H. (2015). Multiple benefits and values of trees in urban landscape in two towns in northern South Africa. Landsc. Urban Plann., 136, 76−86. DOI: 10.1016/j.landurbplan.2014.12.004.Search in Google Scholar

Supuka, J. (1996). Settlement environment conditions and evaluation of their impact on urban vegetation. Ekológia (Bratislava), 15, 37−46.Search in Google Scholar

Supuka, J. (2008). The new trends in nature park design and cological networks in towns (in Slovak). In J. Supuka & Ľ. Feriancová (Eds.), Vegetation structure in settlments. Parks and gardens (pp. 81−100). Nitra: SPU.Search in Google Scholar

Supuka, J., Šinka, K., Pucherová, Z., Verešová, M., Feriancová, Ľ., Bihuňová, M. & Kuczman G. (2013). Landscape structure and biodiversity of woody plants in the agriculture landscape. Folia Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 6(9), 187.Search in Google Scholar

Supuka, J., Šinka, K., Kuczman, G. & Billiková M. (2019). Vegetation structures of the city and their use for recreation activities. In J. Fialová (Ed.), Public recreation and landscape protection - with sense hand in hand (pp. 466−472). Brno: Mendel University in Brno.Search in Google Scholar

Szulczewska, B., Giedych, R., Borowski, J., Kuchcik, M., Sikorski, P., Mazurkiewicz, A. & Stanczyk T. (2014). How much green is needed for a vital neigh-bourhood? In search for empirical evidence. Land Use Policy, 38, 330−345. DOI: 10.1016/j.landusepol.2013.11.006.Search in Google Scholar

Taylor, L. & Hochuli D.F. (2017). Defining greenspace: multiple uses across multiple disciplines. Landsc. Urban Plann., 158, 25−38. DOI: 10.1016/j. landurbplan.2016.09.024.Search in Google Scholar

Tian, J., Jim, C. J. & Wang H. (2014). Assessing the landscape and ecological quality of urban green spaces in the compact city. Landsc. Urban Plann., 121, 97-108. DOI: 10.1016/j.landurbplan.2013.10.001.Search in Google Scholar

Timilsina, N., Standhammer, Ch., Escobedo, F.J. & Lawrence A. (2014). Free biomass, wood waste field, and carbon storage changes in an urban forest. Landsc. Urban Plann., 127, 18−27. DOI: 10.1016/j.landurb-plan.2014.04.003.Search in Google Scholar

Tóth, A. & Timpe A. (2017). Exploring urban agriculture as a component of multifunctional green infrastructure: Application of figure-ground plans as a spatial analysis tool. Moravian Geographical Reports, 25(3), 208−218. DOI: 10.1515/mgr-2017-0018.Search in Google Scholar

Uhrin, P. & Supuka J. (2016). Quality assessment of urban trees using growth visual and chlorophyll fluorescence indicators. Ekológia (Bratislava), 35, 160−172. DOI: 10.1515/eko-2016-0013.Search in Google Scholar

Uhrin, P., Supuka, J. & Billiková M. (2018). Growth adaptability of Norway maple (Acer platanoides, L.) to urban environment. Folia Oecologica, 45(1), 33−45. DOI: 10.2478/foecol-2018-0004.Search in Google Scholar

Vaculová, V. & Štěpánková R. (2017). Application of rain gardens to an urban – housing estate in Nitra, Slovakia. Acta Horticulturae et Regiotecturae, 20, 1−5. DOI: 10.1515/ahr-2017-0001.Search in Google Scholar

Vallecillo, S., Polce, Ch., Barbosa, A., Castillo, C.P., Vandecasteele, J., Rusch, G.M. & Maes J. (2018). Spatial alternatives for green infrastructure planning across the EU: An ecosystem service perspective. Landsc. Urban Plann., 174, 41−54. DOI: 10.1016/j.landurbplan.2018.03.001.Search in Google Scholar

Yan, P. & Yang J. (2017). Species diversity of urban forests in China. Urban Forestry and Urban Greening, 28, 160−166. DOI: 10.1016/j. ufug.2017.09.005.Search in Google Scholar

Yang, L., Quin, F., Song, D.X. & Zheng K.J. (2016). Research on urban heat-island effect. Procedia Engineering, 169, 11−18. DOI: 10.1016/j.proeng.2016.10.002.Search in Google Scholar

Yong, R.F. (2010). Managing municipal green space for ecosystem services. Urban Forestry and Urban Greening, 9, 313−321. DOI: 10.1016./j. ufug.2010.06.007.Search in Google Scholar

Yu, Z., Guo, X., Zeng, Y., Koga, M. & Vejre H. (2018). Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhon city, China. Urban Forestry and Urban Greening, 29, 113−121. DOI: 10.1016./j.ufug.2017.11.008.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo