1. bookVolume 40 (2021): Issue 1 (March 2021)
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Indication of Natural Boreo-Continental Pine Sites Through Discrimination Analysis of the Soil Biochemical and Water-Holding Properties

Published Online: 18 Apr 2021
Page range: 25 - 36
Received: 11 Mar 2020
Accepted: 19 May 2020
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year

Natural pine site differentiation is instrumental in the modification of Scots pine cultivation to environmental change. The aim of this study was to distinguish azonal pine sites in prevailing beechwood conditions by the means of soil property interrelationships. The study aimed at verifying assumptions (i) that intrinsic soil properties suggest differences at naturalness among various communities in the same mesoclimate, relief or on same soil group and (ii) whether pines differ from beechwoods uniformly or unevenly among different regional population areas. The verification was carried out by discrimination analysis of the H- and A-horizon forest soil properties at selected pine and beech stands in the Czech Republic between 2006 and 2015. Homogeneous pines were confirmed either on poorly developed or very infertile soils. Mixed pines were found on Cambisols. Complete separability was found between pines and beechwoods on Podzols due to inverse proportions of correlations among acid phosphomonoesterase (APMEA) and urease (UA) activities, Corg, Cmic, base saturation, bulk density and aeration. The inverse proportions among UA, Ntot, Cmic and soil hydrophysical properties conditioned the separability of pines on different soil groups than beechwoods. Soil indications of natural pines are related to phosphorus release by APMEA and site resistance to drought due to soil organic matter and water-holding capacity.


Acea, M.J., Prieto-Fernández, A. & Diz-Cid N. (2003). Cyanobacterial inoculation of heated soils: effects on microorganisms of C and N cycles on chemical composition in soil surface. Soil Biol. Biochem., 35, 513–524. DOI: 10.1016/S0038-0717(03)00005-1.Search in Google Scholar

Baveye, P.C. & Wander M. (2019). The (bio)chemistry of soil humus and humic substances: Why is the “new view” still considered novel after more than 80 years? Frontiers in Environmental Science, 7, 1–27. DOI: 10.3389/fenvs.2019.00027.Search in Google Scholar

Blum, J.D., Klaue, A., Nezat, C.A., Driscoll, C.T., Johnson, C.E., Siccama, T.G., Eagar, C., Fahey, T.J. & Likens G.E. (2002). Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature, 417, 729–731. DOI: 10.1038/nature00793.Search in Google Scholar

Boublík, K. (2007). Pokus o rekonstrukci potenciálni přirozené vegetace vybraného území Třeboňské pánve. Zprávy České Botanické Společnosti, 42, 155–170.Search in Google Scholar

Brookes, P.C., Landman, A., Pruden, G. & Jenkinson D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem., 17, 837–842. DOI: 10.1016/0038-0717(85)90144-0.Search in Google Scholar

Buckee, G.K. (1994). Determination of total nitrogen in barley, malt and beer by Kjeldahl procedures and the Dumas combustion method – Collaborative trial. J. Inst. Brew., 100, 57–64. DOI: 10.4236/ijg.2014.54042.Search in Google Scholar

Buček, A., Habrová, H., Maděra, P., Král, K., Modrý, M., Lacina, J. & Pavliš J. (2015). Application of Czech methodology of biogeographical landscape differentation in geobiocoenological concept – examples from Cuba, Tasmania and Yemen. Journal of Landscape Ecology, 8, 51–67. DOI: 10.1515/jlecol-2015-0014.Search in Google Scholar

Chiarucci, A., Araújo, M., Decocq, G., Beierkuhnlein, C. & Fernández-Palacios J. (2010). The concept of potential natural vegetation. J. Veg. Sci., 21, 1172–1178. DOI: 10.1111/j.1654-1103.2010.01218.x.Search in Google Scholar

Chytrý, M., Kučera, T., Kočí, M., Grulich, V. & Lustyk P. (Eds.) (2010). Katalog biotopů České republiky. Praha: Agentura ochrany přírody a krajiny ČR.Search in Google Scholar

Clarholm, M. & Skyllberg U. (2013). Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils. Soil Biol. Biochem., 63, 142–153. DOI: 10.1016/j. soilbio.2013.03.019.Search in Google Scholar

Cohran, V.L., Elliot, L.F. & Lewis C.E. (1989). Soil microbial biomass and enzyme activity in subarctic agricultural and forest soils. Biol. Fertil. Soils, 7, 283–288. DOI: 10.1007/BF00257821.Search in Google Scholar

Culek, M. (2013). Biogeographical provinces, subprovinces and bioregions of the Czech Republic. Journal of Landscape Ecology, 6, 5–16. DOI: 10.2478/v10285-012-0065-5.Search in Google Scholar

Datta, R., Anand, S., Moulick, A., Baraniya, D., Pathan, S.I., Rejšek, K., Vranová, V., Sharma, M., Keldar, A. & Formánek P. (2017). How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review. International Agrophysics, 31, 287–302. DOI: 10.1515/intag-2016-0049.Search in Google Scholar

Derome, J., Lindgren, M., Merilä, P., Beuker, E. & Nöjd P. (2007). Forest condition monitoring under the UN/ECE and EU programmes in Finland. Working Papers of the Finnish Forest Research Institute, 45, 11–20.Search in Google Scholar

Elfstrand, S., Hedlund, K. & Mårtensson A. (2007). Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl. Soil Ecol., 35, 610–621. DOI: 10.1016/j. apsoil.2006.09.011.Search in Google Scholar

Elo, S., Maunukcela, L., Salkinoja-Salonen, M., Smolander, A. & Haahtela K. (2000). Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity. FEMS Microbiol. Ecol., 31, 143–152.Search in Google Scholar

Fazekašova, D., Boltižiar, M., Bobuľska, L., Kotorova, D., Hecl, J. & Krnáčová Z. (2013). Development of soil parameters and changing landscape structure in conditions of cold mountain climate (case study Liptovská Teplička). Ekológia (Bratislava), 32, 197–210. DOI: 10.2478/eko-2013-0017.Search in Google Scholar

González-Pastor, J.E., Hobbs, E.C. & Losick R. (2003). Cannibalism by sporulating bacteria. Science, 301, 510–513. DOI: 10.1126/science.1086462.Search in Google Scholar

Green, R.N., Trowbridge, R.L. & Klinka K. (1993). Towards a taxonomic classification of humus forms. For. Sci., 39, 1–49.Search in Google Scholar

Hyvönen, R., Olsson, B.A., Lundkvist, H. & Staaf H. (2000). Decomposition and nutrient release from Picea abies (L.) Karst. and Pinus sylvestris L. logging residues. For. Ecol. Manag., 126, 97–112. DOI: 10.1016/S0378-1127(99)00092-4.Search in Google Scholar

Hýsek, J. & Šarapatka B. (1998). Relationship between phosphatase active bacteria and phosphatase activities in forest soils. Biol. Fertil. Soils, 26, 112–115. DOI: 10.1007/s003740050352.Search in Google Scholar

Kandeler, E. & Gerber H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils, 6, 68–72. DOI: 10.1007/BF00257924.Search in Google Scholar

Kang, H., Xin, Z., Berg, B., Burgess, P.J., Liu, Q., Liu, Z., Li, Z. & Liu C. (2010). Global pattern of leaf litter nitrogen and phosphorus in woody plants. Ann. For. Sci., 67, 811. DOI: 10.1051/forest/2010047.Search in Google Scholar

Kedi, B., Abadie, J., Sei, J., Quiquampoix, H. & Staunton S. (2013). Diversity of adsorption affinity and catalytic activity of fungal phosphatases adsorbed on some tropical soils. Soil Biol. Biochem., 56, 13–20. DOI: 10.1016/j.soilbio.2012.02.006.Search in Google Scholar

Kučera, M. (2016). The Czech Republic. In C. Vidal, I. Alberdi, L. Hernández & J.J. Redmond (Eds.), National Forest Inventories – Assessment of Wood Availability and Use (pp. 307–325). Springer International Publishing Switzerland. DOI: 10.1007/978-3-319-44015-6.Search in Google Scholar

Lehmann, J. & Kleber M. (2015). The contentious nature of soil organic matter. Nature, 528, 60–68. DOI: 10.1038/nature16069.Search in Google Scholar

MacLean, D.A. & Wein R.S. (1978). Litter production and forest floor nutrient dynamics in pine and hardwood stands of New Brunswick, Canada. Ecography, 1, 1–15. DOI: 10.1111/j.1600-0587.1978.tb00933.x.Search in Google Scholar

Magri, D., Vendramin, G.G., Comps, B., Dupanloup, I., Geburek, T., Gömöry, D., Latałowa, M., Litt, T., Paule, L., Roure, J.M., Tantau, I., van der Knaap, W.O., Petit, R.J. & de Beaulieu J.-L. (2006). A new scenario for the quarternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol., 171, 199–221. DOI: 10.1111/j.1469-8137.2006.01740.x.Search in Google Scholar

Michéli, E., Schad, P., Spaargaren, O., Dent, D. & Nachtergaele F. (2007). World reference base for soil resources 2006. A Framework for international classification, correlation and communication. UISS-ISRIC-FAO, World Soil Resources Reports, 103, 1‒128.Search in Google Scholar

Mikeska, M., Vacek, S., Prausová, R., Simon, J., Minx, T., Podrázský, V., Malík, V., Kobliha, J., Anděl, P. & Matějka K. (2008). Lesnicko-typologické vymezení, struktura a management přirozených borů a borových doubrav v ČR. Kostelec nad Černými lesy: Lesnická práce.Search in Google Scholar

Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G. & Renella G. (2003). Microbial diversity and soil functions. Eur. J. Soil Sci., 54, 655–670. DOI: 10.1111/ejss.4_12398.Search in Google Scholar

Neuhäuslová, Z., Blažková, D., Grulich, V., Husová, M., Chytrý, M., Jeník, J., Jirásek, J., Kolbek, J., Kropáč, Z., Ložek, V., Moravec, J., Prach, K., Rybníček, K., Rybníčková, E. & Sádlo J. (1998). Mapa potencionální přirozené vegetace České republiky. Praha: Academia.Search in Google Scholar

Ostroumov, S.A. (2002). New definitions of the concept and terms ecosystem and biogeocoenosis. Doklady Biological Sciences, 383, 141–143.Search in Google Scholar

Park, S., Kub, Y.K., Seo, M.J., Kim, D.Y., Yeon, J.E., Lee, K.M., Jeong, S.-C., Yoon, W.K., Harn, C.H. & Kim H.M. (2006). Principal component analysis and diskriminant analysis (PCA-DA) for discriminating profiles of terminal restriction fragment lenght polymorphism (T-RFLP) in soil bacterial communities. Soil Biol. Biochem., 38, 2344–2349. DOI: 10.1016/j.soilbio.2006.02.019.Search in Google Scholar

Pizzeghello, D., Nicolini, G. & Nardi S. (2001). Hormone-like activity of humic substances in Fagus sylvaticae forests. New Phytol., 151, 647–657. DOI: 10.1046/j.0028-646x.2001.00223.x.Search in Google Scholar

Ponge, J.-F. (2013). Plant–soil feedbacks mediated by humus forms: A review. Soil Biol. Biochem., 57, 1048–1060. DOI: 10.1016/j.soilbio.2012.07.019.Search in Google Scholar

Ponge, J.-F. (2016). The soil under the microscope. The optical examination of a small area of Scots pine litter (Pinus sylvestris L.). Sarrebruck: Éditions Universitaires Européennes.Search in Google Scholar

Priha, O. & Smolander A. (1999). Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Soil Biol. Biochem., 31, 965–977. DOI: 10.1016/S0038-0717(99)00006-1.Search in Google Scholar

Priha, O., Hallantine, T. & Smolander A. (1999). Comparing microbial bio-mass, denitrification enzyme activity, and numbers of nitrifiers in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings by microscale methods. Biol. Fertil. Soils, 30, 14–19. DOI: 10.1007/s003740050581.Search in Google Scholar

Rao, M.A., Violante, A. & Gianfreda L. (2000). Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability. Soil Biol. Biochem., 32, 1007–1014. DOI: 10.1016/S0038-0717(00)00010-9.Search in Google Scholar

Rejšek, K. (1991). Acid phosphomonoesterase activity of ectomycorrhizal roots in Norway spruce pure stands exposed to pollution. Soil Biol. Biochem., 23, 667–671. DOI: 10.1016/0038-0717(91)90081-T.Search in Google Scholar

Rejšek, K. (2006). The quantitative estimate of bioavailable inorganic phosphorus content in forest soils by the modification of the anion-exchange resin method. Soil and Water Research, 1, 117–126. DOI: 10.17221/6513-SWR.Search in Google Scholar

Roscoe, R., Vasconcellos, C.A., Neto, A.E.F., Guedes, G.A.A. & Fernandes L.A. (2000). Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea-nitrogen assimilation by maize in a Brazlian oxisol under no-tillage and tillage systems. Biol. Fertil. Soils, 32, 52–59. DOI: 10.1007/s003740000213.Search in Google Scholar

Samec, P. (2006). Change in acid phosphomonoesterase and urease activities and in microbial biomass after air-drying of top-soil horizons from natural sites of Scots pine (Pinus sylvestris L.): preliminary results. Phytopedon (Bratislava), 5, 28–35.Search in Google Scholar

Samec, P. (2008). Biochemistry of ecological processes in the zonal forest soils. Review. Rep. For. Res., 53, 230–238.Search in Google Scholar

Samec, P., Kučera, A. & Tuček P. (2014). Fluctuations in the properties of forest soils in the Central European Highlands (Czech Republic). Soil and Water Research, 9, 201–213. DOI: 10.17221/68/2013-SWR.Search in Google Scholar

Sariyildiz, T. (2015). Effects of tree species and topography on fine and small root decomposition rates of three common tree species (Alnus glutinosa, Picea orientalis and Pinus sylvestris) in Turkey. For. Ecol. Manag., 335, 71–86. DOI: 10.1016/j.foreco.2014.09.030.Search in Google Scholar

Sewerniak, P. & Piernik A. (2012). Regression models for impact of soil properties on site index class of Scots pine (Pinus sylvestris L.) stands in south-western Poland. Sylwan, 156, 563–571.Search in Google Scholar

Stevenson, B., Sparling, G.B. & Schipper L.A. (2004). Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration response at a landscape level. Soil Biol. Biochem., 36, 49–55. DOI: 10.1016/j.soilbio.2003.08.018.Search in Google Scholar

Šindelář, J., Frýdl, J. & Novotný P. (2007). Towards the Scots pine (Pinus sylvestris L.) regional populations (ecotypes) characteristics in the Czech Republic. Rep. For. Res., 52, 148–159.Search in Google Scholar

Tarafdar, J.C., Yadav, R.S. & Meera S.C. (2001). Comparative efficiency of acid phosphatase originated from plant and fungal sources. J. Plant Nutr. Soil Sci., 164, 279–282. DOI: 10.1002/1522-2624.Search in Google Scholar

Ulrich, B. (1995). The history and possible cause of forest decline in Central Europe, with particular attention to the German situation. In EC - UN/ECE, forest soil condition in Europe. Results of a large-scale soil survey. Brussel, Geneva: UN.Search in Google Scholar

Vacek, S., Vacek, Z., Bílek, L., Simon, J., Remeš, J., Hůnová, I., Král, J., Putalová, T. & Mikeska M. (2016). Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fenn., 50, 1564. DOI: 10.14214/sf.1564.Search in Google Scholar

Vacek, S., Vacek, Z., Remeš, J., Bílek, L., Hůnová, I., Bulušek, D., Putalová, T., Král, J. & Simon J. (2017). Sensitivity of unmanaged relict pine forest in the Czech Republic to climate change and air pollution. Trees, 31, 1599–1617. DOI: 10.1007/s00468-017-1572-0.Search in Google Scholar

Vanmechelen, L., Groenemans, R. & Van Ranst E. (1997). Forest soil condition in Europe. Results of a large-scale soil survey. Brussels, Geneva: EC-UN/ECE.Search in Google Scholar

Vavříček, D. & Chaloupka V. (2005). Nezbytnost definice půdního prostředí při mapování SLT na příkladu oblasti Babí lom. In Douda, J., Joza, V. & Šamonil P. (Eds.), Problematika lesnické typologie VII (p. 24). Praha: ČZU.Search in Google Scholar

Webster, R. (2001). Statistics to support soil research and their presentation. Eur. J. Soil Sci., 52, 331–340. DOI: 10.1046/j.1365-2389.2001.00383.x.Search in Google Scholar

Weintraub, M.N., Scott-Denton, L.E., Schmidt, S.K. & Monson R.K. (2007). The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia, 154, 327–338. DOI: 10.1007/s00442-007-0804-1.Search in Google Scholar

Yavitt, J.B., Wright, S.J. & Wieder K. (2004). Seasonal drought and dry-season irrigation influence leaf-litter nutrients and soil enzymes in a moist, lowland forest in Panama. Austral Ecol., 29, 177–188. DOI: 10.1111/j.1442-9993.2004.tb00309.x.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo