Open Access

Phytoncide activity of woody plants under the conditions of steppe zone


Cite

Davison, B., Taipale, R., Langford, B., Misztal, P., Fares, S., Matteucci, G., Loreto, F., Cape, J.N., Rinne, J. & Hewitt C.N. (2009). Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in western Italy. Biogeosciences, 6, 1655–1670. DOI: 10.5194/bg-6-1655-2009.10.5194/bg-6-1655-2009Open DOISearch in Google Scholar

Dewulf, J., Joó, É., Van Langenhove, H., Pokorska, O., Van Langenhove, H., Steppe, K., Lemeur, R., Šimpraga, M., Verbeeck, H., Bloemen, J., Demarcke, M., Amelynck, C., Schoon, N., Müller, J.-F., Laffineur, Q., Aubinet, M. & Heinesch B. (2012). Impact of phenology and environmental conditions on BVOC emissions from forest ecosystems IMPECVOC. Final Report. Brussels: Belgian Science Policy (Research Programme Science for a Sustainable Development). http://www.impecvoc.ugent.beSearch in Google Scholar

Duhl, T.R., Helmig, D. & Guenther A. (2008). Sesquiterpene emissions from vegetation: a review. Biogeosciences, 5, 761–777. DOI: 10.5194/bg-5-761-2008.10.5194/bg-5-761-2008Open DOISearch in Google Scholar

Fowler, D. (2002) Pollutant deposition and uptake be vegetation In J.N.D. Dell & M. Treshow (Eds.), Air pollution and plant life (pp. 43–69). West Sussex: John Wiley & Sons Ltd.Search in Google Scholar

Fuentes, J.D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J.W., Ciccioli, P., Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T.D. & Stockwell W. (2000). Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bulletin of the American Meteorological Society 81 (7), 1537–1575. https://www.jstor.org/stable/2621517810.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2Search in Google Scholar

Grodzinskiy, A.M. (1973). Fundamentals of chemical interaction of plants (in Russian). Kiev: Nauk Dumka.Search in Google Scholar

Grote, R., Monson, R. & Niinements Ü. (2013). Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In Ü. Niinements & R. Monson (Eds.), Biology, controls and models of tree volatile organic compound emissions (pp. 315–355). Dordrecht: Springer Science and Business Media.10.1007/978-94-007-6606-8_12Search in Google Scholar

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I. & Geron C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3181–3210. DOI: 10.5194/acp-6-3181-2006.10.5194/acp-6-3181-2006Open DOISearch in Google Scholar

Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K. & Wang X. (2012). The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471–1492. DOI: 10.5194/gmd-5-1471-2012.10.5194/gmd-5-1471-2012Open DOISearch in Google Scholar

Harley, P., Eller, A., Guenther, A. & Monson R.K. (2014). Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance. Oecologia, 176, 35–55. DOI: 10.1007/s00442-014-3008-5.10.1007/s00442-014-3008-5Open DOISearch in Google Scholar

Harley, P.C. (2013) The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves biology. In Ü. Niinements & R. Monson (Eds.), Controls and models of tree volatile organic compound emissions (pp. 181–208). Dordrecht: Springer Science and Business Media.10.1007/978-94-007-6606-8_7Search in Google Scholar

Hopke, P.K. (2009). Theory and application of atmospheric source apportionment. In A.H. Legge (Ed.), Air quality and ecological impacts: relating sources to effects (pp. 99–121). Elsevier.10.1016/S1474-8177(08)00201-5Search in Google Scholar

Kesselmeier, J. & Staudt M. (1999). Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33, 23−88. DOI: 10.1023/A:1006127516791.10.1023/A:1006127516791Open DOISearch in Google Scholar

Kleist, E., Mentel, T.F., Andres, S., Bohnel, A., Folkers, A., Kiendler-Scharr, A., Rudich, Y., Springer, M., Tillmann, R. & Wildt J. (2012). Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences, 9, 5111–5123. DOI: 10.5194/bg-9-5111-2012.10.5194/bg-9-5111-2012Open DOISearch in Google Scholar

Korshikov, I.I. (2004). Stability of plants to technogenic pollutants of the environment (in Russian). Industrial Botany, 4, 46–58.Search in Google Scholar

Kulagin, Yu.Z. (1985). Industrial dendroecology and forecasting (in Russian). Moscow: Nauka.Search in Google Scholar

Lipinskogo, V.M., Dyachuka, V.A., Babichenko V.M. (Eds.) (2003). Climate of Ukraine (in Ukrainian). Vid–vo Raevskogo. Methodology of phenological observation in the USSR Botanical Gardens (1979). Byul. Gl. Botan. Sada, 113, 3–8.Search in Google Scholar

Oderbolz, D.C., Aksoyoglu, S., Keller, J., Barmpadimos, I., Steinbrecher, R., Skjøth, C. A., Plaß-Dülmer, C. & Prévôt A.S.H. (2013). A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover. Atmospheric Chemistry and Physics, 13, 1689–1712. DOI: 10.5194/acp-13-1689-2013.10.5194/acp-13-1689-2013Open DOISearch in Google Scholar

Pag, A., Bodescu, A., Kännaste, A., Tomescu, D., Niinemets, Ü. & Copolovici L. (2013). Volatile organic compounds emission from Betula verrucosa under drought stress. Scientific Bulletin of ESCORENA, 8, 45–53.Search in Google Scholar

Pennuelas, J. & Llusia J. (2001). The complexity of factors driving volatile organic compounds emissions by plants. Biol. Plant. 44(4), 481–487. DOI: 10.1023/A:1013797129428.10.1023/A:1013797129428Open DOISearch in Google Scholar

Polyakov, A.K. (2009). Introduction of woody plants in the conditions of technogenic environment (in Russian). Donetsk: Noulidzh.Search in Google Scholar

Roschina, V.V. & Roschina V.D. (2012). Excretory function of higher plants (in Russian). Elektronnoe izdatelstvo “Analiticheskaya mikroskopiya”. Elektronnyiy resurs : http://cam.psn.ruSearch in Google Scholar

Slepyih, V.V. (2004) Natural and antropogenic factors and phytoncide activity of woody plants (in Russian). Lesn. hoz-vo, 6, 17–19.Search in Google Scholar

State of the Natural Environment (2010). In S.Tretyakov & G.Averin (Eds.), The land of our concern. Based on material from Reports on the state of the natural environment in Donetsk Oblast (pp. 45–48).Search in Google Scholar

Steinbrecher, R., Smiatek, G., Koëble, R., Seufert, G., Theloke, J., Hauff, K., Ciccioli, P., Vautard, R. & Curci G. (2009). Intra- and inter-annual variability of VOC emissions from natural and seminatural vegetation in Europe and neighbouring countries. Atmos. Environ., 43, 1380–1391 DOI: 10.1016/j.atmosenv.2008.09.072.10.1016/j.atmosenv.2008.09.072Open DOISearch in Google Scholar

Tokin, B.P. (1980). Medicinal poisons of plants (in Russian). Leningrad.Search in Google Scholar

Zaitseva, I.O. (2003). Research of phenorytmics of woody plants (in Ukrainian). Dnipropetrovsk: Dnipropetrovsk National University.Search in Google Scholar

eISSN:
1337-947X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, Environmental Chemistry, Geosciences, Geography, Life Sciences, Ecology, other