Cite

Alekseenko, V.A., Pashkevich, M.A. & Alekseenko A.V. (2017). Metallisation and environmental management of mine site soils. Journal of Geochemical Exploration, 174, 121–127. DOI: 10.1016/j.gexplo.2016.06.010.10.1016/j.gexplo.2016.06.010Open DOISearch in Google Scholar

Alexander, M. (2000). Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ. Sci. Technol., 34, 4259–4265. DOI: 10.1021/es001069.10.1021/es001069Open DOISearch in Google Scholar

Allen, H.E, Huang, C.P., Bailey, G.W. & Bowers A.R. (1995). Metal speciation and contamination of soil. Boca Raton, FL: Lewis Publishers.Search in Google Scholar

Appenroth, K.J. (2010). Definition of “heavy metals” and their role in biological systems. In Soil heavy metals. Soil biology, 19 (pp. 19–29). Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-02436-8_2.10.1007/978-3-642-02436-8_2Open DOISearch in Google Scholar

Avessalomov, I.A. (1987). Geochemical indicators in the study of landscapes (in Russian). Moscow: Publishing House of Moscow University.Search in Google Scholar

Brown, P.H., Welch, R.M. & Madison J.T. (1990). Effect of nickel deficiency on soluble anion, amino acid and nitrogen levels in barley. Plant Soil, 125, 19–27.10.1007/BF00010740Search in Google Scholar

Chodak, M. & Niklińska M. (2010). The effect of different tree species on the chemical andmicrobial properties of reclaimed mine soils. Biol. Fertil. Soils, 46(6), 555–566. DOI: 10.1007/s00374-010-0462-z.10.1007/s00374-010-0462-zOpen DOISearch in Google Scholar

Chudzińska, E., Celiński, K., Pawlaczyk, E. & Diatta J. (2016). Trace element contamination differentiates the natural population of Scots pine: evidence from DNA microsatellites and needle morphology. Environ. Sci. Pollut. Res. Int., 23(21), 22151–22162. DOI: 10.1007/s11356-016-7472-9.10.1007/s11356-016-7472-9Open DOISearch in Google Scholar

Dmuchowski, W. & Bytnerowicz A. (1995). Monitoring environmental pollution in Poland by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environ. Pollut., 87, 87–104. DOI: 10.1016/S0269-7491(99)80012-8.10.1016/S0269-7491(99)80012-8Open DOISearch in Google Scholar

Eide, D.J. (2006). Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta, Molecular Cell Research. 1763(7), 711–722. DOI: 10.1016/j.bbamcr.2006.03.005.10.1016/j.bbamcr.2006.03.005Open DOISearch in Google Scholar

Fernández, S., Poschenrieder, C., Marcenò, C., Gallego, J.R., Jiménez-Gámez, D., Bueno, A. & Afif E. (2017). Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mine wastes in the Cantabrian range, north of Spain. Journal of Geochemical Exploration. 174, 10–20. DOI: 10.1016/j.bbamcr.2006.03.005: 10.1016/j.gexplo.2016.05.015.10.1016/j.bbamcr.2006.03.005:10.1016/j.gexplo.2016.05.015Open DOISearch in Google Scholar

Grishko, V.M., Syschykov, D.V., Piskova, A.M., Danilchuk, O.V. & Mashtaler O.V. (2012). Heavy metals: intake in soil, translocation in plants and environmental hazards (in Ukrainian). Donetsk.Search in Google Scholar

Hüttl, R. (1998). Ecology of post strip-mine landscapes in Lusatia, Germany. Environmental Science Pollution, 1, 129–135. DOI: 10.1016/S1462-9011(98)00014-8.10.1016/S1462-9011(98)00014-8Open DOISearch in Google Scholar

Hüttl, R. & Weber E. (2001). Forest ecosystem development in post-mine landscapes: a case study of the Lusatian lignite district. Naturwissenschaften, 88, 322–329. DOI: 10.1007/s001140100241.10.1007/s00114010024111572012Open DOISearch in Google Scholar

Itoh, Y., Miura, S. & Yoshinaga S. (2006). Atmospheric lead and cadmium deposition within forests in the Kanto district, Japan. J. For. Res., 11(2), 137–142. DOI: 10.1007/s10310-005-0196-1.10.1007/s10310-005-0196-1Open DOISearch in Google Scholar

Jarup, L. (2003). Hazards of heavy metal contamination. Br. Med. Bull., 68, 167–182. DOI: 10.1093/bmb/ldg032.10.1093/bmb/ldg03214757716Open DOISearch in Google Scholar

Kaar, E. (2002). Coniferous trees on exhausted oil shale opencast mines. Metsanduslikud Uurimused (Forestry Studies), 36, 120–125.Search in Google Scholar

Kabata-Pendias, A. (2011). Trace elements in soil and plants. Boca Raton: CRC Press. DOI: 10.1201/b10158.10.1201/b10158Open DOISearch in Google Scholar

Khokhotva, A.P. (2010). Adsorption of heavy metals by a sorbent based on pine bark. Journal of Water Chemistry and Technology, 32(6), 336–340. DOI: 10.3103/S1063455X10060044.10.3103/S1063455X10060044Open DOISearch in Google Scholar

Kubatbekov, T.S., Aitmatov, M.B. & Ibraimakunov M. (2012). Antimony in natural technogenic conditions of the biosphere: water, soil, plants (in Russian). Bulletin of the Russian University of Peoples’ Friendship, 4, 56–60.Search in Google Scholar

Kuznetsova, T., Mandre, M., Klõseiko, J. & Pärn H. (2010). A comparison of the growth of Scots pine (Pinus sylvestris L.) in a reclaimed oil shale post-mine area and in a Calluna site in Estonia. Environ. Monit. Assess., 166, 257–265. DOI: 10.1007/s10661-009-0999-1.10.1007/s10661-009-0999-119472062Open DOISearch in Google Scholar

Lakyda, P.I. (2003). Phytomass of Ukrainian forests (in Ukrainian). Ternopil: Sbruch.Search in Google Scholar

Lin, Q., Chen, Y.X., He, Y.F. & Tian G.M. (2004). Root-induced changes of lead availability in the rhizosphere of Oryza sativa L. Agric. Ecosyst. Environ., 104, 605–613. DOI: 10.1016/j.agee.2004.01.001.10.1016/j.agee.2004.01.001Open DOISearch in Google Scholar

Marko-Worłowska, M., Chrzan, A. & Łaciak T. (2011). Scots pine bark, topsoil and pedofauna as indicators of transport pollutions in terrestrial ecosystems. J. Environ. Sci. Health, 46, 138–148. DOI: 10.1080/10934529.2010.500896.10.1080/10934529.2010.50089621170775Open DOISearch in Google Scholar

Marmiroli, M., Pietrini, F., Maestri, E., Zacchini, M., Marmiroli, N. & Massacci A. (2011). Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol., 31, 1319–1334. DOI: 10.1093/treephys/tpr090.10.1093/treephys/tpr09022052656Open DOISearch in Google Scholar

Pietrzykowski, M. & Socha J. (2011). An estimation of Scots pine (Pinus sylvestris L.) ecosystem productivity on reclaimed post-mine sites in Poland (central Europe) using of allometric equations. Ecological Engineering, 37(2), 381–386. DOI: 10.1016/j.ecoleng.2010.10.006.10.1016/j.ecoleng.2010.10.006Open DOISearch in Google Scholar

Pietrzykowski, M., Socha, J. & van Doorn N.S. (2014). Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Sci. Total Environ., 470–471, 501–510. DOI: 10.1016/j.scitotenv.2013.10.008.10.1016/j.scitotenv.2013.10.00824176697Open DOISearch in Google Scholar

Pöykiö, R., Hietala, J. & Nurmesniemi H. (2010). Scots pine needles as bioindicators in determine the aerial distribution pattern of sulphur emissions around industrial plants. World Academy of Science, Engineering and Technology, 44, 116–119.Search in Google Scholar

Prasad, M.N.V. & Hagemeyer J. (1999). Heavy metal stress in plants. From molecules to ecosystems. Berlin Heidelberg: Springer-Verlag. DOI: 10.1007/978-3-662-07745-0.10.1007/978-3-662-07745-0Open DOISearch in Google Scholar

Risto, P., Perämäki, P. & Niemelä M. (2005). The use of Scots pine (Pinus sylvestris L.) bark as a bioindicator for environmental pollution monitoring along two industrial gradients in the Kemi-Tornio area, northern. International Journal of Environmental Analytical Chemistry, 85, 127–139. DOI: 10.1080/03067310412331330758.10.1080/03067310412331330758Open DOISearch in Google Scholar

Saarelaa, K.-E., Harjua, L., Rajandera, J., Lillb, J.-O., Heseliusb, S.-J., Lindroosd, A. & Mattsson K. (2005). Elemental analyses of pine bark and wood in an environmental study. Sci. Total Environ., 343, 231–241. DOI: 10.1016/j.scitotenv.2004.09.043.10.1016/j.scitotenv.2004.09.04315862848Open DOISearch in Google Scholar

Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M. & Pinelli E. (2014). Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev. Environ. Contamin. Toxicol., 232, 1–44. DOI: 10.1007/978-3-319-06746-9_1.10.1007/978-3-319-06746-9_124984833Open DOISearch in Google Scholar

Thapa, G., Sadhukhan, A., Panda, S.K. & Sahoo L. (2012). Molecular mechanistic model of plant heavy metal tolerance. Biometals, 25, 489–505. DOI: 10.1007/s10534-012-9541-y.10.1007/s10534-012-9541-y22481367Open DOISearch in Google Scholar

Verbruggen, N., Hermans, C. & Schat H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytol., 181(4), 759–776. DOI: 10.1111/j.1469-8137.2008.02748.x.10.1111/j.1469-8137.2008.02748.x19192189Open DOISearch in Google Scholar

Wuana, R.A. & Okieimen F.E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 20. DOI: 10.5402/2011/402647.10.5402/2011/402647Open DOISearch in Google Scholar

eISSN:
1337-947X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, Environmental Chemistry, Geosciences, Geography, Life Sciences, Ecology, other