Cite

[1] Talebpour F, Ghahghaei A. Effect of green synthesis of gold nanoparticles (AuNPs) from Hibiscus sabdariffa on the aggregation of α-lactalbumin. Int J Pept Res Ther. 2020;26(4):2297-306. DOI: 10.1007/s10989-020-10023-9.Search in Google Scholar

[2] Kamala Nalini SP, Vijayaraghavan K. Green synthesis of silver and gold nanoparticles using aloe vera gel and determining its antimicrobial properties on nanoparticle impregnated cotton fabric. J Nanotechnol Res. 2020;2(3):42-50. Available from: https://www.fortunejournals.com/articles/green-synthesis-of-silver-and-gold-nanoparticles-using-aloe-vera-gel-and-determining-its-antimicrobial-properties-on-nanoparticle-.html.Search in Google Scholar

[3] Ansari N, Lodha A, Patel TL. A novel microwave-assisted green synthesis of copper nanoparticles using Citrus limon and its application for antibacterial and antifungal activity. Int J Nanosci. 2022;21(3):2250016. DOI: 10.1142/S0219581X22500168.Search in Google Scholar

[4] Mohan VR, Doss A, Tresina PS, Beulah GGP, Juliet MR. Biogenic synthesis of copper nanoparticles using aquatic pteridophyte Marsilea quadrifolia Linn. rhizome and its antibacterial activity. Int J Nano Dimension. 2020;11(4):337-45. Available from: https://journals.iau.ir/article_674921.html.Search in Google Scholar

[5] Umer A, Naveed S, Ramzan N, Rafique MS, Imran M. A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Matéria. 2014;19(3):197-203. DOI: 10.1590/S1517-70762014000300002.Search in Google Scholar

[6] Naz S, Gul A, Zia M. Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol. 2019;14(1):1-13. DOI: 10.1049/iet-nbt.2019.0176.Search in Google Scholar

[7] Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arabian J Chem. 2019;12(8):3576-600. DOI: 10.1016/j.arabjc.2015.11.002.Search in Google Scholar

[8] Md. Islam J, Khatun MT, Md. Rahman R, Alam MM. Green synthesis of copper oxide nanoparticles using Justicia adhatoda leaf extract and its application in cotton fibers as antibacterial coatings. AIP Adv. 2021;11(12):125223. DOI: 10.1063/5.0076941.Search in Google Scholar

[9] Kiriyanthan RM, Sharmili SA, Balaji R, Jayashree S, Mahboob S, Al-Ghanim KA, et al. Photocatalytic, antiproliferative and antimicrobial properties of copper nanoparticles synthesized using Manilkara zapota leaf extract: A photodynamic approach. Photodiagnosis Photodyn Ther. 2020;32:102058. DOI: 10.1016/j.pdpdt.2020.102058.Search in Google Scholar

[10] Hemmati S, Ahmeda A, Salehabadi Y, Zangeneh A, Zangeneh MM. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of strawberry fruit and l-ascorbic acid. Polyhedron. 2020;144:25180. DOI: 10.1016/j.poly.2020.114425.Search in Google Scholar

[11] Liu H, Zheng S, Xiong H, Alwahibi MS, Niu X. Biosynthesis of copperoxide nanoparticles using Abies spectabilis plant extract and analyzing its antinociceptive and anti-inflammatory potency in various mice models. Arabian J Chem. 2020;139:6995-7006. DOI: 10.1016/j.arabjc.2020.07.006.Search in Google Scholar

[12] Das P, Ghosh S, Ghosh R, Dam S, Baskey M. Madhuca longifolia plant mediated green synthesis of cupric oxide nanoparticles: A promising environmentally sustainable material for waste water treatment and efficient antibacterial agent. J Photochem Photobiol B: Biology. 2018;189:66-73. DOI: 10.1016/j.jphotobiol.2018.09.023.Search in Google Scholar

[13] Mali SC, Dhaka A, Githala CK, Trivedi R. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol Rep (Amst). 2020;27:e00518. DOI: 10.1016/j.btre.2020.e00518.Search in Google Scholar

[14] Dankovich TA, Smith JA. Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res. 2014;63:245-51. DOI: 10.1016/j.watres.2014.06.022.Search in Google Scholar

[15] Rao KJ, Paria S. Phytochemicals mediated synthesis of multifunctional Ag-Au-TiO2 heterostructure for photocatalytic and antimicrobial applications. J Cleaner Prod. 2017;165:360-8. DOI: 10.1016/j.jclepro.2017.07.147.Search in Google Scholar

[16] Rao KJ, Paria S. Mixed phytochemicals mediated synthesis of multifunctional Ag-Au-Pd nanoparticles for glucose oxidation and antimicrobial applications. ACS Appl Mater Interfaces. 2015;7(25):14018-25. DOI: 10.1021/acsami.5b03089.Search in Google Scholar

[17] Rao KJ, Paria S. Aegle marmelos leaf extract and plant surfactants mediated green synthesis of Au and Ag nanoparticles by optimizing process parameters using Taguchi method. ACS Sust Chem Eng. 2015. DOI: 10.1021/acssuschemeng.5b00022.Search in Google Scholar

[18] Akyalcin S, Akyalcin L, Bjørgen M. Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method. Microporous Mesoporous Materials. 2019;273:256-64. DOI: 10.1016/j.micromeso.2018.07.014.Search in Google Scholar

[19] Rao KJ, Korumilli T, Jakkala S, Singh K, Vidya K. Optimization of the one-step green synthesis of silver and gold nanoparticles using aqueous Athyrium filix femina extract using the Taguchi method. BioNanoScience. 2021;11(4):915-22. DOI: 10.1007/s12668-021-00909-3.Search in Google Scholar

[20] Rao KJ, Paria S. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Materials Res Bull. 2013;48(2):628-34. DOI: 10.1016/j.materresbull.2012.11.035.Search in Google Scholar

[21] Rao KJ, Paria S. Green synthesis of gold nanoparticles using aqueous Aegle marmelos leaf extract and its application for thiamine detection. RSC Adv. 2014; 28645-52. DOI: 10.1039/C4RA03883E.Search in Google Scholar

[22] Othumpangat S, Fedan JS. Oil spills. In: Reference Module in Biomedical Sciences, Elsevier. 2022. DOI: 10.1016/B978-0-12-824315-2.00166-4.Search in Google Scholar

[23] Phan TTV, Hoang G, Nguyen VT, Nguyen TP, Kim HH, Mondal S, et al. Chitosan as a stabilizer and size-control agent for synthesis of porous flower-shaped palladium nanoparticles and their applications on photo-based therapies. Carbohydrate Polymers. 2019;205:340-52. DOI: 10.1016/j.carbpol.2018.10.062.Search in Google Scholar

[24] Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC. The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method. Adv Nat Sci: Nanosci Nanotechnol. 2011;2(2):025004. DOI: 10.1088/2043-6262/2/2/025004.Search in Google Scholar

[25] Takemura K. Surface plasmon resonance (SPR)- and localized SPR (LSPR)-based virus sensing systems: optical vibration of nano- and micro-metallic materials for the development of next-generation virus detection technology. Biosensors. 2021;11(8):8. DOI: 10.3390/bios11080250.Search in Google Scholar

[26] Singh KG, Singh G, Kang TS. Aggregation behavior of sodium dioctyl sulfosuccinate in deep eutectic solvents and their mixtures with water: An account of solvent’s polarity, cohesiveness, and solvent structure. ACS Omega. 2018;3(10):13387-98. DOI: 10.1021/acsomega.8b01637.Search in Google Scholar

[27] Nocelli NE, de las Zulueta Díaz YM, Millot M, Colazo ML, Vico RV, Fanani ML. Self-assembled nanostructures of L-ascorbic acid alkyl esters support monomeric amphotericin B. Heliyon. 2021;7(1):e06056. DOI: 10.1016/j.heliyon.2021.e06056.Search in Google Scholar

[28] Thanuja J, Udayabhanu, Nagaraju G, Naika HR. Biosynthesis of Cu4O3 nanoparticles using Razma seeds: application to antibacterial and cytotoxicity activities. SN Appl Sci. 2019;1(12):1646. DOI: 10.1007/s42452-019-1556-3.Search in Google Scholar

[29] Ali MAE, Aboelfadl MMS, Selim AM, Khalil HF, Elkady GM. Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases. Separation Sci Technol. 2018;53(18):2870-81. DOI: 10.1080/01496395.2018.1489845.Search in Google Scholar

[30] Drabczyk A, Kudłacik-Kramarczyk S, Głąb M, Kędzierska M, Jaromin A, Mierzwiński D, et al. Physicochemical investigations of chitosan-based hydrogels containing Aloe vera designed for biomedical use. Materials. 2020;13(14):3073. DOI: 10.3390/ma13143073.Search in Google Scholar

[31] Machodi MJ, Daramol MO. Synthesis and performance evaluation of PES/chitosan membranes coated with polyamide for acid mine drainage treatment. Sci Rep. 2019;9(1):1. DOI: 10.1038/s41598-019-53512-8.Search in Google Scholar

[32] Sionkowska A, Kaczmarek B, Lewandowska K. Characterisation of chitosan after cross-linking by tannic acid. PCACD. 2014;19(1);135-8. DOI: 10.15259/PCACD.19.16.Search in Google Scholar

[33] Mittapally S, Taranum R, Parveen S. Metal ions as antibacterial agents. J Drug Delivery Ther. 2018;8(6):411-9. DOI: 10.22270/jddt.v8i6-s.2063.Search in Google Scholar

[34] Mohammadi Ziarani G, Khademi M, Mohajer F, Badiei A, Varma RS. The synthesis of 2,2-bis(1-indol-3-yl)acenaphthylene-1(2)-ones using nanocatalysis: Fluorescent sensing for Cu2+ ions. Ecol Chem Eng S. 2022;29(4):463-75. DOI: 10.2478/eces-2022-0033.Search in Google Scholar

[35] Narath S, Shankar SS, Sivan SK, George B, Thomas TD, Sabarinath S, et al. Facile green synthesis of Cinnamomum tamala extract capped silver nanoparticles and its biological applications. Ecol Chem Eng S. 2023;30(1):7-21. DOI: 10.2478/eces-2023-0001.Search in Google Scholar

eISSN:
2084-4549
Language:
English