Open Access

Nitrogen Removal and Sludge Reduction in Anoxic-Aerobic Sequencing Batch Reactor with Alkaline-H2O2 Disintegration


Cite

[1] Liu Y. Chemically reduced excess sludge production in activated sludge process. Chemosphere. 2003;50:1-7. DOI: 10.1016/S0045-6535(02)00551-9.10.1016/S0045-6535(02)00551-912656222 Search in Google Scholar

[2] Li P, Li H, Li J, Guo X, Liu J, Xiao B. Evaluation of sludge reduction of three metabolic uncouplers in laboratory-scale anaerobic-anoxic-oxic process. Bioresour Technol. 2016;221:31-6. DOI: 10.1016/j.biortech.2016.09.019.10.1016/j.biortech.2016.09.01927639221 Search in Google Scholar

[3] Niu T, Zhou Z, Ren W, Jiang LM, Li B, Wei H, et al. Effects of potassium peroxymonosulfate on disintegration of waste sludge and properties of extracellular polymeric substances. Int Biodeterior Biodegrad. 2016;106:170-7. DOI: 10.1016/j.ibiod.2015.10.021.10.1016/j.ibiod.2015.10.021 Search in Google Scholar

[4] Ferrentino R, Merzari F, Andreottola G. Optimisation of Fe2+/H2O2 ratio in Fenton process to increase dewaterability and solubilisation of sludge. Environ Technol. 2020;41:2946-54. DOI: 10.1080/09593330.2019.1589583.10.1080/09593330.2019.158958330817238 Search in Google Scholar

[5] Gondek K, Mierzwa-Hersztek M, Kopeć M, Spałek, I. Compost produced with addition of sewage sludge as a source of Fe and Mn for plants. Ecol Chem Eng S. 2021;28:259-75. DOI: 10.2478/eces-2021-0019.10.2478/eces-2021-0019 Search in Google Scholar

[6] Yang SS, Guo WQ, Cao GL, Zheng HS, Ren NQ. Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour Technol. 2012;124:347-54. DOI: 10.1016/j.biortech.2012.08.007.10.1016/j.biortech.2012.08.00722995165 Search in Google Scholar

[7] Romero-Pareja PM, Aragon CA, Quiroga JM, Coello MD. Evaluation of a biological wastewater treatment system combining an OSA process with ultrasound for sludge reduction. Ultrason Sonochem. 2017;36:336-42. DOI: 10.1016/j.ultsonch.2016.12.006.10.1016/j.ultsonch.2016.12.00628069218 Search in Google Scholar

[8] Ma H, Zhang S, Lu X, Xi B, Guo X, Wang H, et al. Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment. Bioresour Technol. 2012;116:441-7. DOI: 10.1016/j.biortech.2012.03.091.10.1016/j.biortech.2012.03.09122522015 Search in Google Scholar

[9] Feng XC, Guo WQ, Chen C, Yang SS, Jin WB, Ren NQ, et al. Treatability study of 3, 3′, 4′, 5-tetrachlorosalicylanilide (TCS) combined with 2, 4, 6-trichlorophenol (TCP) to reduce excess sludge production in a sequence batch reactor. Bioresour Technol. 2013;143:642-6. DOI: 10.1016/j.biortech.2013.05.119.10.1016/j.biortech.2013.05.11923856019 Search in Google Scholar

[10] Karlikanovaite-Balikci A, Yagci N. Evaluation of sludge reduction in an oxic-settling-anoxic system operated with step feeding regime for nutrient removal and fed with real domestic wastewater. J Environ Manage. 2019;243:385-92. DOI: 10.1016/j.jenvman.2019.05.042.10.1016/j.jenvman.2019.05.04231103684 Search in Google Scholar

[11] Datta T, Liu Y, Goel R. Evaluation of simultaneous nutrient removal and sludge reduction using laboratory scale sequencing batch reactors. Chemosphere. 2009;76:697-705. DOI: 10.1016/j.chemosphere.2009.02.040.10.1016/j.chemosphere.2009.02.04019409599 Search in Google Scholar

[12] Mees JBR, Gomes SD, Hasan SDM, Gomes BM, Vilas Boas MA. Nitrogen removal in a SBR operated with and without pre-denitrification: effect of the carbon: nitrogen ratio and the cycle time. Environ Technol. 2014;35:115-23. DOI: 10.1080/09593330.2013.816373.10.1080/09593330.2013.81637324600848 Search in Google Scholar

[13] Liu Q, Singh VP, Fu Z, Wang J, Hu L. An anoxic-aerobic system for simultaneous biodegradation of phenol and ammonia in a sequencing batch reactor. Environ Sci Pollut Res. 2017;24:11789-99. DOI: 10.1007/s11356-017-8840-9.10.1007/s11356-017-8840-928342078 Search in Google Scholar

[14] Cui R, Jahng D. Nitrogen control in AO process with recirculation of solubilized excess sludge. Water Res. 2004;38:1159-72. DOI: 10.1016/j.watres.2003.11.013.10.1016/j.watres.2003.11.01314975649 Search in Google Scholar

[15] Xu R, Zhang Q, Tong J, Wei Y, Fan Y. Internal carbon source from sludge pretreated by microwave-H2O2 for nutrient removal in A2/O-membrane bioreactors. Environ Technol. 2015;36:827-36. DOI: 10.1080/09593330.2014.963694.10.1080/09593330.2014.96369425263108 Search in Google Scholar

[16] Gao Y, Peng Y, Zhang J, Wang S, Guo J, Ye L. Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process. Bioresour Technol. 2011;102:4091-7. DOI: 10.1016/j.biortech.2010.12.051.10.1016/j.biortech.2010.12.05121232933 Search in Google Scholar

[17] Yang S, Guo W, Chen Y, Zhou X, Zheng H, Feng X, Yin R, Ren N. Simultaneous nutrient removal and reduction in sludge from sewage waste using an alternating anaerobic-anoxic-microaerobic-aerobic system combining ozone/ultrasound technology. RSC Adv. 2014;4:52892-7. DOI: 10.1039/C4RA05762G.10.1039/C4RA05762G Search in Google Scholar

[18] Zhang Y, Lu G, Zhang H, Li F, Li L. Enhancement of nitrogen and phosphorus removal, sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with composite ferrate solution disintegration. Environ Res. 2020;190:110006. DOI: 10.1016/j.envres.2020.110006.10.1016/j.envres.2020.11000632784019 Search in Google Scholar

[19] Ren H, Wang Y, Wei Z, Liu P, Wang B. Excess sludge conditioning with ultrasound/ozone and its effect on the anaerobic anoxic oxic process in a municipal wastewater treatment plant. Process Saf Environ Prot. 2020;140:170-7. DOI: 10.1016/j.psep.2020.04.052.10.1016/j.psep.2020.04.052 Search in Google Scholar

[20] He Z, Han W, Zhou X, Jin W, Liu W, Gao S, et al. Effect of on-site sludge reduction and wastewater treatment based on electrochemical-A/O combined process. Water. 2021;13:941. DOI: 10.3390/w13070941.10.3390/w13070941 Search in Google Scholar

[21] Kim DH, Jeong E, Oh SE, Shin H. Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res. 2010;44:3093-100. DOI: 10.1016/j.watres.2010.02.032.10.1016/j.watres.2010.02.03220303565 Search in Google Scholar

[22] Zhang W, Xiao B, Li Y, Liu Y, Guo X. Effects of return sludge alkaline treatment on sludge reduction in laboratory-scale anaerobic-anoxic-oxic process. J Biotechnol. 2018;285:1-5. DOI: 10.1016/j.jbiotec.2018.08.018.10.1016/j.jbiotec.2018.08.01830170105 Search in Google Scholar

[23] Kim TH, Lee SR, Nam YK, Yang J, Park C, Lee M. Disintegration of excess activated sludge by hydrogen peroxide oxidation. Desalination. 2009;246:275-84. DOI: 10.1016/j.desal.2008.06.023.10.1016/j.desal.2008.06.023 Search in Google Scholar

[24] Guan R, Yuan X, Wu Z, Jiang L, Li Y, Zeng G. Principle and application of hydrogen peroxide based advanced oxidation processes in activated sludge treatment: A review. Chem Eng J. 2018;339:519-30. DOI: 10.1016/j.cej.2018.01.153.10.1016/j.cej.2018.01.153 Search in Google Scholar

[25] Zeng RJ, Lemaire R, Yuan Z, Keller J. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnol Bioeng. 2003;84:170-8. DOI: 10.1002/bit.10744.10.1002/bit.1074412966573 Search in Google Scholar

[26] APHA. Standard Methods for Water and Wastewater Examination. 22th ed. Washington: Amer Public Health Assn. 2012. ISBN: 9780875530130. Search in Google Scholar

[27] Li Y, Yuan X, Wu Z. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process. Chem Eng J. 2016;303:636-45. DOI: 10.1016/j.cej.2016.06.041.10.1016/j.cej.2016.06.041 Search in Google Scholar

[28] Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350-6. DOI: 10.1021/ac60111a017.10.1021/ac60111a017 Search in Google Scholar

[29] Lowry OH, Rosebrough, NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-75. DOI: 10.1016/s0021-9258(19)52451-6.10.1016/S0021-9258(19)52451-6 Search in Google Scholar

[30] Henze M, Holm Kristensen G, Strube R. Rate-capacity characterization of wastewater for nutrient removal processes. Water Sci Technol. 1994;29:101-7. DOI: 10.2166/wst.1994.0318.10.2166/wst.1994.0318 Search in Google Scholar

[31] Yoon SH, Kim HS, Lee S. Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production. Process Biochem. 2004;39:1923-9. DOI: 10.1016/j.procbio.2003.09.023.10.1016/j.procbio.2003.09.023 Search in Google Scholar

[32] Boehler M, Siegrist H. Potential of activated sludge ozonation. Water Sci Technol. 2007;55:181-7. DOI: 10.2166/wst.2007.407.10.2166/wst.2007.40717674846 Search in Google Scholar

[33] Lv XM, Song JS, Li J, Zhai K. Reduction of excess sludge in a sequencing batch reactor by lysis-cryptic growth using quick lime for disintegration under low temperature. Environ Technol. 2017;38:1835-42. DOI: 10.1080/09593330.2016.1238514.10.1080/09593330.2016.123851427691718 Search in Google Scholar

[34] Zhang Y, Meng C, He Y, Wang X, Xue G. Influence of cell lysis by Fenton oxidation on cryptic growth in sequencing batch reactor (SBR): Implication of reducing sludge source discharge. Sci Total Environ. 2021;148042. DOI: 10.1016/j.scitotenv.2021.148042.10.1016/j.scitotenv.2021.14804234323827 Search in Google Scholar

[35] Zubrowska-Sudol M, Walczak J. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge. Water Res. 2015;76:10-8. DOI: 10.1016/j.watres.2015.02.041.10.1016/j.watres.2015.02.04125776916 Search in Google Scholar

[36] Salehiziri M, Amini Rad H, Novak JT. An integrated approach to lysis-cryptic growth (sludge ozonation) and sequencing batch reactor coupled to an anaerobic side-stream reactor (SBR-ASSR): Performance and characteristics. Ozone: Sci Eng. 2019;41:508-20. DOI: 10.1080/01919512.2019.1575182.10.1080/01919512.2019.1575182 Search in Google Scholar

[37] An Y, Zhou Z, Yao J, Niu T, Qiu Z, Ruan, D, et al. Sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with potassium ferrate disintegration. Bioresour Technol. 2017;245:954-61. DOI: 10.1016/j.biortech.2017.09.023.10.1016/j.biortech.2017.09.02328946196 Search in Google Scholar

[38] Banu JR, Kavitha S, Kannah RY, Varjani S, Gunasekaran M. Mild hydrogen peroxide interceded bacterial disintegration of waste activated sludge for efficient biomethane production. Sci Total Environ. 2022;817:152873. DOI: 10.1016/j.scitotenv.2021.152873.10.1016/j.scitotenv.2021.15287334998769 Search in Google Scholar

[39] Uan DK, Yeom IT, Arulazhagan P, Rajesh Banu J. Effects of sludge pretreatment on sludge reduction in a lab-scale anaerobic/anoxic/oxic system treating domestic wastewater. Int J Environ Sci Technol. 2013;10:495-502. DOI: 10.1007/s13763-012-0120-0.10.1007/s13762-012-0120-0 Search in Google Scholar

[40] Yuan D, Zhou X, Jin W, Han W, Chi H, Ding W, et al. Effects of the combined utilization of ultrasonic/hydrogen peroxide on excess sludge destruction. Water. 2021;13:266. DOI: 10.3390/w13030266.10.3390/w13030266 Search in Google Scholar

[41] Sun LP, Lin YJ, Shi CY, Wang SQ, Luo WX, Wang M. Effects of interchange ratio on sludge reduction and microbial community structures in an anaerobic/anoxic/oxic process with combined anaerobic side-stream reactor. Water Sci Technol. 2020;81:1250-63. DOI: 10.2166/wst.2020.223.10.2166/wst.2020.22332597411 Search in Google Scholar

eISSN:
2084-4549
Language:
English