1. bookVolume 28 (2021): Issue 2 (June 2021)
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Compost Produced with Addition of Sewage Sludge as a Source of Fe and Mn for Plants

Published Online: 23 Jul 2021
Page range: 259 - 275
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Direct application of sewage sludge to soil is controversial due to, among others, its highly variable composition, odour, and risks for health. The obtained composts with the addition of sewage sludge were tested for the contents and availability of manganese and iron. Once composts were applied to the soil, their effect on the content and availability of Mn and Fe in soil and bioaccumulation in the plant were determined. The addition of sewage sludge enriched composts with manganese and iron, but did not increase the content of water-extracted forms of Mn and Fe. The compost with addition of biochar had more organic matter-bound forms of Mn and Fe. Composts amended with sewage sludge had lower effect on the amount of Poa pratensis L. biomass than maize straw compost. The content of Mn and Fe in Poa pratensis L. was in the range permissible for biomass used as fodder. Smaller addition of all composts to the soil significantly increased the content of mobile manganese forms; however, neither the type nor the dose had effect on the content of iron mobile forms. There was no significant differences in the content of organic matter-bound forms of Mn and Fe in soil after the application of composts.

Keywords

[1] Latośińska J, Kowalik R, Gawdzik J. Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Appl Sci. 2021;11:548. DOI: 10.3390/app11020548. Search in Google Scholar

[2] Environmental, economic and social impacts of the use of sewage sludge on land. Final Report, part I: Overview Report prepared by Milieu Ltd, WRcand RPA for the European Commission; 2008. Available from: https://ec.europa.eu/environment/archives/waste/sludge/pdf/part_i_report.pdf. Search in Google Scholar

[3] Błaszczyk K, Krzyśko-Łupicka T. Microbiological and physico-chemical composition of sewage sludge derived from the food industry. Chem Didact Ecol Metrol. 2013;18(1-2):89-95. DOI: 10.2478/cdem-2013-0021. Search in Google Scholar

[4] Ding A, Zhang R, Ngo HH, He X, Ma J, Nan J, et al. Life cycle assessment of sewage sludge treatment and disposal based on nutrient and energy recovery: A review. Sci Tot Environ. 2021;15:14451. DOI: 10.1016/j.scitotenv.2020.144451. Search in Google Scholar

[5] Miller U, Grzelka A, Romanik E, Kuriata M. Analysis of the application of selected physico-chemical methods in eliminating odor nuisance of municipal facilities. E3S Web of Conferences 28, 01023, Air Protection in Theory and Practice. 2018. DOI: 10.1051/e3sconf/20182801023. Search in Google Scholar

[6] Werle S. Nitrogen oxides emission reduction using sewage sludge gasification gas Reburning process. Ecol Chem Eng S. 2015;22(1):83-94. DOI: 10.1515/eces-2015-0005. Search in Google Scholar

[7] Golbaz S, Zamanzadeh MZ, Pasalari H, Farzadkia M. Assessment of co-composting of sewage sludge, woodchips, and sawdust: feedstock quality and design and compilation of computational model. Environ Sci Pollut Res Int. 2021;28:12414-27. DOI: 10.1007/s11356-020-11237-6. Search in Google Scholar

[8] Bernal MP, Alburquerque JA, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol. 2009;100(22):5444-53. DOI: 10.1016/j.biortech.2008.11.027. Search in Google Scholar

[9] Amon B, Kryvoruchko V, Amon T, Zechmeister-Boltenstern S. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric Ecosyst Environ. 2006;112(2-3):153-62. DOI: 10.1016/j.agee.2005.08.030. Search in Google Scholar

[10] Godlewska P, Schmidt HP, Ok YS, Oleszczuk P. Biochar for composting improvement and contaminants reduction. A review. Bioresour Technol. 2017;246:193-202. DOI: 10.1016/j.biortech.2017.07.095. Search in Google Scholar

[11] Czekała W, Malińska K, Cáceres R, Janczak D, Dach J, Lewicki A. Co-composting of poultry manure mixtures amended with biochar-The effect of biochar on temperature and C-CO2 emission. Bioresour Technol. 2016;200:921-27. DOI: 10.1016/j.biortech.2015.11.019. Search in Google Scholar

[12] Kopeć M, Gondek K, Mierzwa-Hersztek M, Zaleski T. Effect of the composting process on physical and energetic changes in compost. Acta Agroph. 2015;23(4):607-19. Available from: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-15a994a0-dca4-429e-87cf-b4845a3a0619. Search in Google Scholar

[13] Kopeć M, Baran A, Mierzwa-Hersztek M, Gondek K. Chmiel MJ. Effect of the addition of biochar and coffee grounds on the biological properties and ecotoxicity of compost. Waste Biom Val. 2018;9:1389-98. DOI: 10.1007/s12649-017-9916-y. Search in Google Scholar

[14] He MM, Tian GM, Liang XQ. Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge. J Hazard Mater. 2009;163(2):671-7. DOI: 10.1016/j.jhazmat.2008.07.013. Search in Google Scholar

[15] Martinho J, Campos B, Brás I, Silva E. The role of compost properties in sorption of heavy metals. Environ Prot Eng. 2015;41:57-65. DOI: 10.5277/epe150205. Search in Google Scholar

[16] Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, et al. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere. 2014;99:19-33. DOI: 10.1016/j.chemosphere.2013.10.071. Search in Google Scholar

[17] Papageorgiou A, Azzi ES, Enell A, Sundberg C. Biochar produced from wood waste for soil remediation in Sweden: Carbon sequestration and other environmental impacts. Sci Tot Environ. 2021;776:145953. DOI: 10.1016/j.scitotenv.2021.145953. Search in Google Scholar

[18] Jansen B, Nierop KGJ, Verstraten JM. Mechanisms controlling the mobility of dissolved organic matter, aluminium and iron in podzol B horizons. Europ J Soil Sci. 2005;56(4):537-50. DOI: 10.1111/j.1365-2389.2004.00686.x. Search in Google Scholar

[19] Xue N, Seip HM, Guo J, Liao B, Zeng Q. Distribution of Al, Fe, Mn pools and their correlation in soils from two acid deposition small catchments in Hunan, China. Chemosphere. 2006; 65(11):2468-76. DOI: 10.1016/j.chemosphere.2006.04.045. Search in Google Scholar

[20] Gruba P. The solubility of iron in forest soil. Electr J Pol Agric Univ. 2010;13(4). Available from: http://www.ejpau.media.pl/volume13/issue4/art-23.html. Search in Google Scholar

[21] European Biochar Certificate - EBC, 2012. Guidelines for a Sustainable Production of Biochar. Version 6.1 of 19th June 2015. European Biochar Foundation (EBC), Arbaz, Switzerland. DOI: 10.13140/RG.2.1.4658.7043. Available from: http://www.europeanbiochar.org/en/download. Search in Google Scholar

[22] Meier S, Curaqueo G, Khan N, Bolan N, Rilling J, Vidal C, et al. Effect of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil. J Soil Sedim. 2017;17(5):1237-50. DOI: 10.1007/s11368-015-1224-1. Search in Google Scholar

[23] Jindo K, Suto K, Matsumoto K, Garcia C, Sonoki T, Sanchez-Monedero MA. Chemical and biochemical chracterisation of biochar-blended composts prepared from poultry manure. Bioresour Technol. 2012;110:396-404. DOI: 10.1016/j.biortech.2012.01.120 Search in Google Scholar

[24] Agrafioti E, Bouras G, Kalderis D, Diamadopulos E. Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrol. 2013;101:72-8. DOI: 10.1016/j.jaap.2013.02.010. Search in Google Scholar

[25] Elementar Analysensysteme GmbH. Operating instructions vario MAX cube. 2013; 407. www.elementar.com/en/products/organic-elemental-analyzers/vario-max-cube. Search in Google Scholar

[26] Zeien H, Brümmer GW. Chemische extraction zur bestimung vin schwermetallbindungsformen in böden. Mitteilg. Dtsch. Bodenkundl. Gesellsch. 1989;59:505-10. Search in Google Scholar

[27] Oleszczuk N, Castro JT, da Silva MM, Korn Md, Welz B, Vale MG. Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Talanta. 2007;73(5):862-9. DOI: 10.1016/j.talanta.2007.05.005. Search in Google Scholar

[28] Barret EP, Joyner LG, Halenda PH. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Amer Chem Soc. 1951;73(1):373-80. DOI: 10.1021/ja01145a126. Search in Google Scholar

[29] Park JH, Choppala GK, Bolan NS, Chung JW, Chusavathi T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 2011;348:439-51. DOI: 10.1007/s11104-011-0948-y. Search in Google Scholar

[30] Monzó J, Paya J, Borrachero MV, Córcoles A. Use of sewage sludge ash (SSA)-cement admixtures in mortars. Cem Conc Res. 1996;26(9):1389-98. DOI: 10.1016/0008-8846(96)00119-6. Search in Google Scholar

[31] Singh J, Kalamdhad AS. Bioavailability and leachability of heavy metals during water hyacinth composting. Chem Spec Bioavailab. 2013;25(1):1-14. DOI: 10.3184/095422913X13584520294651. Search in Google Scholar

[32] Liu HT, Gao D, Chen TB, Cai H, Zheng GD. Improvement of salinity in sewage sludge compost prior to its utilization as nursery substrate. J Air Waste Manage Assoc. 2014;64(5):546-51. DOI: 10.1080/10962247.2013.872710. Search in Google Scholar

[33] Tennant MF, Mazyck DW. The role of surface acidity and pore size distribution in the adsorption of 2-methylisoborneol via powdered activated carbon. Carbon. 2007;45:858-64. DOI: 10.1016/j.carbon.2006.11.009. Search in Google Scholar

[34] Hua L, Wu W, Liu Y, McBride MB, Chen Y. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ Sci Pollut Res. 2009;16(1):1-9. DOI: 10.1007/s11356-008-0041-0. Search in Google Scholar

[35] Hiller DA, Brümmer GW. Electron microprobe studies on soil samples with varying heavy metal contamination: Part 2. Contents of heavy metals and other elements in aggregations of humic substances, litter residues, and charcoal particles. Z Pflanzenernähr Bodenkd. 1997;160:47-55. DOI: 10.1002/jpln.19951580204. Search in Google Scholar

[36] Vandecasteele B, Sinicco T, D'Hose T, Nest TV, Mondini C. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. J Environ Manage. 2016;168:200-9. DOI: 10.1016/j.jenvman.2015.11.045. Search in Google Scholar

[37] Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, et al. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J. 2010;102:623-33. DOI: 10.2134/agronj2009.0083. Search in Google Scholar

[38] Major J, Rondon M, Molina D, Riha SJ, Lehmann J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil. 2010;333:117-28. DOI: 10.1007/s11104-010-0327-0. Search in Google Scholar

[39] Schmidt HP, Kammann C, Niggli C, Evangelou MWH, Mackie KA, Abiven S. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agricult Ecosyst Environ. 2014;191:117-23. DOI: 10.1016/j.agee.2014.04.001. Search in Google Scholar

[40] Saha S, Pondey AK, Gopinath KA, Bhattacharaya R, Kundu S, Gupta HS. Nutritional quality of organic rice grown on organic composts. Agron Sustain Dev. 2007;27(3):223-9. DOI: 10.1051/agro:2007002. Search in Google Scholar

[41] Hashemimajd K, Mohamadi Farani T, Jamaati-e-Somarin S. Effect of elemental sulphur and compost on pH, electric al conductivity and phosphorus availability of one clay soil. Afr J Biotechnol. 2012;11(6):1425-32. DOI: 10.5897/AJB11.2800. Search in Google Scholar

[42] Demir K, Sahin O, Kadioglu YK, Pilbeam DJ, Gunes A. Essential and non-essential element composition of tomato plants fertilized with poultry manure. Sci Hort. 2010;127(1):16-22. DOI: 10.1016/j.scienta.2010.08.009. Search in Google Scholar

[43] Hernández A, Castillo H, Ojeda D, Arras A, López J, Sánchez E. Effect of vermicompost and compost on lettuce production. Chil J Agric Res. 2010;70(4):583-9. Available from: https://www.semanticscholar.org/paper/Effect-of-Vermicompost-and-Compost-on-Lettuce-Hern%C3%A1ndez-Castillo/33ca48adf783f53e0ad5497eea187514b31a265e. Search in Google Scholar

[44] Castillo C, Rubio R, Contreras A, Borie F. Hongos micorrizógenos arbusculares en un Ultisol de la IX Región fertilizado orgánicamente (Effect of compost addition on arbuscular mycorrhizal propagules in a southern Chilean volcanic soil). Rev Cienc Suelo Nutr. 2004;4(2):39-47. Available from: https://scielo.conicyt.cl/pdf/rcsuelo/v6n3/art03.pdf. Search in Google Scholar

[45] Buttler TJ, Muir PM. Dairy manure compost improves soil and increase tall wheatgrass yield. Agron J. 2006;98:1090-6. DOI: 10.2134/agronj2005.0348. Search in Google Scholar

[46] Leifeld J, Siebert S, Kögel-Knabner I. Changes in the chemical composition of soil organic matter after application of compost. Eur J Soil Sci. 2002;53:299-309. DOI: 10.1046/j.1351-0754.2002.00453.x. Search in Google Scholar

[47] Carmo DL, de Lima LB, Silva CA. Soil fertility and electrical conductivity affected by organic waste rates and nutrient inputs. Rev Bras Cienc Solo. 2016;40:1-17. DOI: 10.1590/18069657rbcs20150152. Search in Google Scholar

[48] Bouajila K, Sanaa M. Effect of organic amendments on soil physic-chemical and biological properties. J Mater Environ Sci. 2011;2:485-90. Available from: https://www.jmaterenvironsci.com/Document/vol2/vol2_S1/12-GSO-S1-01-Bouajila%20kkedija.pdf. Search in Google Scholar

[49] Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr. 2010;10(3):268-92. DOI: 10.4067/S0718-95162010000100005. Search in Google Scholar

[50] Gondek K. Contents of manganese in maize and soil fertilized with organic materials. Ecol Chem Eng A. 2008;15(10):1057-66. Search in Google Scholar

[51] Hsu J-H, Lo S-L. Characterization and extractability of copper, manganese, and zinc in swine manure compost. J Environ Qual. 2000;29(2):447-53. DOI: 10.2134/jeq2000.00472425002900020012x. Search in Google Scholar

[52] Maqueda C, Herencja JF, Ruiz JC, Hidalgo MF. Organic and inorganic fertilization effects on DTPA-extractable Fe, Cu, Mn and Zn, and their concentration in the edible portion of crops. J Agric Sci. 2011;149(4):461-72. DOI: 10.1017/S0021859610001085. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo