1. bookVolume 28 (2021): Issue 2 (June 2021)
Journal Details
First Published
08 Nov 2011
Publication timeframe
4 times per year
access type Open Access

Heat Recovery of Compost Reactors: Field Study of Operational Behaviour, Heating Power and Influence Factors

Published Online: 23 Jul 2021
Page range: 201 - 217
Journal Details
First Published
08 Nov 2011
Publication timeframe
4 times per year

This study evaluates the common process and set-up design of a static compost bioreactor for heat recovery. A technology, which fits the goal of a sustainable, growing bioeconomy which combines the utilization of compost heat and compost material. Interest on this technology has been growing the last years but precise data of pilot scale reactors is rare. Data is required to adjust the process for custom needs and further technical development. Therefore, lignin-cellulose based biomass was composted in unaerated cylindrical compost reactors size 20 to 70 m3 for 140 days. The biomass comes with C:N ratio of about 25:1, water content of 43-48 %, organic matter content of 40.6 % d.m. and calorific value of 8.3 MJ/kg d.m. Spatial distribution of temperature and gas concentration (oxygen, carbon dioxide, methane) within the reactor shows methane production of the anaerobic core area. Maximum thermal power of 5.2 kW from a 63 m3 reactor with average temperature of heating flow about 40 °C was reached. Maximum recovered heating power of 4.8 MJ/kg d.m. was calculated for an operation of 6 month. This corresponds to 50 % of the measured calorific value. Biggest influence factors detected on the recovered heating power of the pilot scale reactor has been the size of reactor, the set up quality and the control of heat exchanger. The spatial correlation between heat production and aerobic digestion suggests a technical development in terms of aeration.


[1] 52016DC0051:2016-02. EU Strategy on Heating and Cooling. European Commission. Communication from the Commission to the European Parliament, the Council, the European economic and social committee and the Committee of the Regions. Available from: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52016DC0051. Search in Google Scholar

[2] Federal Ministry of Economic Affairs and Energy. Time series for the development of renewable energy sources in Germany 1990-2021. Berlin: 2021. Available from: https://www.erneuerbareenergien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.htmlen.pdf;jsessionid=7E3EC118E76717EF6EC854AEEC411E27?__blob=publicationFile&v=13. Search in Google Scholar

[3] 32018L2001:2018-12. The promotion of the use of energy from renewable sources. European Parliament and of the Council. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018L2001. Search in Google Scholar

[4] Federal Ministry of Science and Education. Bioökonomie in Deutschland (Bioeconomy in Germany). Bonn, Berlin: 2014. Available from: https://www.bmbf.de/upload_filestore/pub/Biooekonomie_in_Deutschland.pdf. Search in Google Scholar

[5] Brosowski A, Brosowski A, Thrän D, Mantau U, Mahro B, Erdmann G, et al. A review of biomass potential and current utilisation; Status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy. 2016;95:257-72. DOI: 10.1016/j.biombioe.2016.10.017. Search in Google Scholar

[6] Osterburg B, Schüler M, Klages S. Auswirkungen der Novelle der Düngeverordnung auf die Kompostanwendung in der Landwirtschaft (Effects of the Fertilizer Directive Novel on the Application of Compost in Agriculture). Braunschweig: Thünen-Institut; 2016. Available from: https://www.kompost.de/fileadmin/user_upload/Dateien/HUK-Dateien/1_2_2016/Kompost_und_DueVNovelle_Zwischenbericht_1_2016_v6.pdf. Search in Google Scholar

[7] 31991L0676:1991-12/2008. Protection of waters against pollution caused by nitrates from agricultural sources. European Council Directive. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31991L0676. Search in Google Scholar

[8] Richter F, Kern M, Raussen T, Wagner J. Optimierung der Erfassung, Aufbereitung und stofflich-energetischen Verwertung von Grüngut in Deutschland (Optimization of the collection, processing and material and energy recovery of green waste in Germany). Witzenhausen: Witzenhausen-Institut; 2019. Available from: https://www.energetische-biomassenutzung.de/fileadmin/Steckbriefe/dokumente/03KB107_Gr%C3%BCn-OPTI_Schlussbericht.pdf. Search in Google Scholar

[9] Hoffman H, Kern M. Weiterentwicklung der stofflichen und energetischen Verwertung von Biomasse beim Zweckverband regionale Abfallwirtschaft (Further development of the material and energetic utilization of biomass at the association of regional waste management). Witzenhausen: Witzenhausen-Institut; 2011. Available from: http://regent.art-trier.de/upload/dokumente/10372.pdf. Search in Google Scholar

[10] Smith MM, Aber JD, Rynk R. Heat recovery from composting: A comprehensive review of system design, recovery rate, and utilization. Compost Sci Utilization. 2016;0:1-12. DOI: 10.1080/1065657X.2016.1233082. Search in Google Scholar

[11] Müller N. Untersuchung zum Betriebsverhalten von Biomeilern (Operational Behaviour of Compost Reactors with Heat Recovery). Dresden: Technical Universiät Dresden; 2017. Available from: https://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa2-709495. Search in Google Scholar

[12] Zhao R, Guo H, Gao W, Tong G. Literature Review on Composting Heat Recovery. CSBE/SCGAB 2015 Annual Conf. Edmonton, Alberta: The Canadian Society for Bioengineering; 2015. Available from: https://library.csbe-scgab.ca/docs/meetings/2015/CSBE15136.pdf. Search in Google Scholar

[13] Petiot C, De Guardia A. Composting in a laboratory reactor: A review. Compost Sci Utilization. 2004;12:69-79. DOI: 10.1080/1065657X.2004.10702160. Search in Google Scholar

[14] Wang Y, Pang L, Liu X, Wang Y, Zhou K, Luo F. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor. Bioresour Technol. 2016;206:164-72. DOI: 10.1016/j.biortech.2016.01.097. Search in Google Scholar

[15] Lashermes G, Barriuso E, Le Villio-Poitrenaud M, Houot S. Composting in small laboratory pilots; Performance and reproducibility. Waste Manage. 2012;32:271-7. DOI: 10.1016/j.wasman.2011.09.011. Search in Google Scholar

[16] Fulford B. The Composting Greenhouse at New Alchemy Institute: A Report on Two Years of Operation and Monitoring March 1984-January 1986. Hatchville: New Alchemy Institute; 1986. ISBN: 093382209X. Search in Google Scholar

[17] DE3932765A1:1991-09. Bio:heat incubator; Heats greenhouse using hot air from rotting compost. Patent. Available from: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE000003932765A1. Search in Google Scholar

[18] Schuchardt F. Wärmeentzug bei der Kompostierung von Schnittholz (Heat extraction during composting of greencut wood). Landbauforschung Völkenrode. 1984;34:189-95. Available from: https://literatur.thuenen.de/digbib_extern/dk016224.pdf. Search in Google Scholar

[19] Schuchardt F. Versuche zum Wärmeentzug aus Festmist. Landbauforschung Völken-Rode. 1983;33:169-78. Available from: https://literatur.thuenen.de/digbib_extern/dk001577.pdf. Search in Google Scholar

[20] Vemmelund N, Berthelsen L. A note on heat recovery from mechanically aerated farm-yard manure. Agricultural Wastes. 1979;1:157-60. Available from: https://www.sciencedirect.com/journal/agricultural-wastes/vol/1/issue/2. Search in Google Scholar

[21] Viel M, Sayag D, Peyre A, André L. Optimization of in-vessel co-composting through heat recovery. Biological Wastes. 1987;20:167-85. DOI: 10.1016/0269-7483(87)90152-2. Search in Google Scholar

[22] Winship EAN, Holmes D, Notion D. Combined heat and composting; In moving organic waste recycling toward resource management and biobased economy. Orbit 6th International Conference - Moving Organic Waste Recycling towards Resource Management and for Biobased Economy, 2008;1451-1463. Wageningen, Netherlands. Available from: https://www.researchgate.net/profile/Marina-Rodriguez-Diaz/publication/266509055_effect_of_urban_sewage_sludge_compost_on_bacterial_biodiversity_and_soil_enzymatic_activities/links/5433c4620cf2dc341dada0b3/effect-of-urban-sewage-sludge-compost-on-bacterial-biodiversity-and-soil-enzymatic-activities.pdf. Search in Google Scholar

[23] Smith M, Aber J. Heat Recovery from Compost; Guide to Building an Aerated Static Pile Heat Recovery Composting Facility. New Hampshire: University of New Hampshire; 2017. DOI: 10.13140/RG.2.2.22893.23520. Search in Google Scholar

[24] Di Maria F, Postrioti L, Micale C, Sordi A, Marconi M. Energy recovery from low temperature heat produced during aerobic biological treatment. Energy Procedia. 2014;45:81-90. DOI: 10.1016/j.egypro.2014.01.010. Search in Google Scholar

[25] Irvine G, Lamont ER, Antizar-Ladislao B. Energy from waste; Reuse of compost heat as a source of renewable energy. Int J Chem Eng. 2010;ID627930. DOI: 10.1155/2010/627930. Search in Google Scholar

[26] Di Maria F, Benavoli M, Zappitelli M. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction. Waste Manage. 2008;28:805-12. DOI: 10.1016/j.wasman.2007.03.021. Search in Google Scholar

[27] Soyez K, Koller M. Verfahrensentwicklung zur Kopplung von Kompostierung und Gewächshausproduktion- BMBF-Verbundvorhaben „Neue Techniken zur Kompostierung“ Teilvorhaben TV3/1-3 (Process development for the integration of composting and greenhouse production - BMBF joint "New techniques for composting" TV3/1-3). Potsdam: German Environmental Agency; 1996. Available from: http://worldcat.org/identities/viaf-148589293. Search in Google Scholar

[28] Jaccard L, Lehmann P, Civilini M, Bertoldi M de. Yard waste composting with heat recovery. Compost Sci Utilization. 1993;1:10-4. DOI: 10.1080/1065657X.1993.10757882. Search in Google Scholar

[29] Seki H, Komori T. Packed-column-type heating tower for recovery of heat generated in compost. J Agricult Meteorology. 1992;48:237-46. DOI: 10.2480/agrmet.48.237. Search in Google Scholar

[30] Konrad K. Einfache und verlässliche Berechnung des oTS-Abbaugrades in Biogasanlagen (Simple and reliable calculation of the oTS degradation level in biogas plants). Biogas Forum Bayern III -16/2015, Hrsg. ALBBayern e.V. Available from: http://www.biogas-forum-bayern.de/media/files/0001/Einfache-undverlassliche-Berechnung-des-oTS-Abbaugrades-in-Biogasanlagen.pdf. Search in Google Scholar

[31] Epstein E. Industrial Composting; Environmental Engineering and Facilities Management. Boca Raton: CRC Press Inc; 2011. ISBN: 9781439845318. Search in Google Scholar

[32] Schmidt-Baum T, Jaschke N. Mehrkammer-Biomeiler. Neue Möglichkeiten zur Schließung regionaler Energie- und Stoffkreisläufe durch flammenlose energetische Nutzung von Reststoffen (Multi-chamber compost reactor; New possibilities for closing regional energy and material cycles through flameless energetic use of residual materials). Rostocker Bioenergieforum. 2020:329-39. Rostock: Nelles M; 2020. Available from: https://bioenergieforum.auf.uni-rostock.de/files/Tagungsband.pdf. Search in Google Scholar

[33] DIN EN ISO 17828:2016-05. Solid biofuels - Determination of bulk density. Available from: https://www.beuth.de/de/norm/din-en-15103/124227785. Search in Google Scholar

[34] DIN EN ISO 18134-1:2015-12. Solid biofuels - Determination of moisture content - Oven dry method - Part 1: Total moisture - Reference method. Available from: https://www.beuth.de/de/norm/din-en-iso-18134-1/232359808. Search in Google Scholar

[35] DIN EN ISO 16948:2015-09. Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen. Available from: https://www.beuth.de/de/norm/din-en-iso-16948/222780653. Search in Google Scholar

[36] DIN EN ISO 18125:2017-08. Solid biofuels - Determination of calorific value. Available from: https://www.beuth.de/de/norm/din-en-iso-18125/266725966. Search in Google Scholar

[37] DIN EN ISO 17827-1:2016-10. Solid biofuels - Determination of particle size distribution for uncompressed fuels - Part 1: Oscillating screen method using sieves with apertures of 3,15 mm and above. Available from: https://www.beuth.de/de/norm/din-en-iso-17827-1/242406902. Search in Google Scholar

[38] DIN EN ISO 18122:2016-03. Solid biofuels - Determination of ash content. Available from: https://www.beuth.de/de/norm/din-en-iso-18122/233573333. Search in Google Scholar

[39] Brummack J. Das Dombelüftungsverfahren; Ein vielseitig einsetzbares Belüftungsverfahren für offene Rottemieten auch nach 2005 (The dome aeration process; A versatile aeration process for outdoor rotting windrows even after year 2005). Abfallforschungstage 2004. Karlsruhe: Wasteconsult; 2004. Available from: http://www.wasteconsult.net/files/downloads/2004-E18_Brummack%20Dombelueftung1.pdf. Search in Google Scholar

[40] Nwanze K, Clark G. Optimizing heat extraction from compost. Compost Sci Utilization. 2015;27:1-10. DOI: 10.1080/1065657X.2019.1686443. Search in Google Scholar

[41] Lekic S. Possibilities of Heat Recovery from Waste Composting Process. Cambridge: University of Cambridge, Centre for Sustainable Development; 2005. Available from: https://www-esdmphil.eng.cam.ac.uk/about-the-programme/dissertations/students/SnezanaLekic. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo