Cite

[1] Tülek S, Dolar FS. Detection and identification of Alternaria species causing diseases of carrot in Ankara province, Turkey. Horticulture. 2015;59:263-8. Available from: http://horticulturejournal.usamv.ro/pdf/2015/art42.pdf.Search in Google Scholar

[2] Tylkowska K. Carrot seed-borne diseases caused by Alternaria species. In: Chełkowski J, Visconti A, editors. Alternaria Biology, Plant Diseases and Metabolites. Elsevier Science Publishers; 1992. ISBN: 0444889981.Search in Google Scholar

[3] Mikołajczak N. Potential health benefits of Aloe vera. J Educ Health Sport. 2018;8(9):1420-35. DOI: 10.5281/zenodo.1434046.Search in Google Scholar

[4] Almeida ES, de Oliveira D, Hotza D. Properties and applications of Morinda citrifolia (noni): A review. Compr Rev Food Sci F. 2019;18:883-909. DOI: 10.1111/1541-4337.12456.10.1111/1541-4337.12456Search in Google Scholar

[5] Jasso de Rodríguez D, Hernández-Castillo D, Rodríguez-García R, Angulo-Sánchez JL. Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi. Ind Crops Prod. 2005;21:81-7. DOI: 10.1016/j.indcrop.2004.01.002.10.1016/j.indcrop.2004.01.002Search in Google Scholar

[6] Hamman JH. Composition and applications of Aloe vera leaf gel. Molecules. 2008;13:1599-616. DOI: 10.3390/molecules13081599.10.3390/molecules13081599Search in Google Scholar

[7] Chauhan S, Gupta KC, Agraval M. Application of biodegradable Aloe vera gel to control post harvest decay and longer the shelf life of grapes. Int J Curr Microbiol Appl Sci. 2014;3(3):632-42. Available from: https://www.ijcmas.com/vol-3-3/Shweta%20Chauhan,%20et%20al.pdf.Search in Google Scholar

[8] Nidiry ESJ, Ganeshan G, Lokesha AN. Antifungal activity of some extractives and constituents of Aloe vera. Res J Med Plant. 2011;5(2):196-200. DOI: 10.3923/rjmp.2011.196.200.10.3923/rjmp.2011.196.200Search in Google Scholar

[9] Marpudi SL, Abirami LSS, Pushkala R, Srividya N. Enhancement of storage life and quality maintenance of papaya fruits using Aloe vera based antimicrobial coating. Indian J Biotechnol. 2011;10:83-9. DOI: 10.1007/s10327-012-0380-z.10.1007/s10327-012-0380-zSearch in Google Scholar

[10] Navarro D, Díaz-Mula HM, Guillén F, Zapata PJ, Castillo S, Serrano M, et al. Reduction of nectarine decay caused by Rhizopus stolonifer, Botrytis cinerea and Penicillium digitatum with Aloe vera gel alone and with addition of thymol. Int J Food Microbiol. 2011;151(2):241-6. DOI: 10.1016/j.ijfoodmicro.2011.09.009.10.1016/j.ijfoodmicro.2011.09.009Search in Google Scholar

[11] Saks Y, Barkai-Golan R. Aloe vera gel activity against plant pathogenic fungi. Postharvest Biol Technol. 1995;6:159-65. DOI: 10.1016/0925-5214(94)00051-S.10.1016/0925-5214(94)00051-SSearch in Google Scholar

[12] El-Samawaty AMA, Yassin MA, Bahkali A, Moslem M, Abd-Elslam KA. Bio-fungicidal activity of Aloe vera sap against mycotoxigenic seed-borne fungi. Fresenius Environ Bull. 2011;20(6):1352-9. Available from: https://www.prt-parlar.de/download_feb_2011/.Search in Google Scholar

[13] Bajwa R, Shafique S, Shafique S. Appraisal of antifungal activity of Aloe vera. Mycopathology. 2007;5(1):5-9. Available from: https://pdfs.semanticscholar.org/1fe4/c0fbd7f087080568bded5ab0f54f605ce5c1.pdf.Search in Google Scholar

[14] Rosca-Casian O, Parvu M, Vlase L, Tamas M. Antifungal activity of Aloe vera leaves. Fitoterapia. 2007;78:219-22. DOI: 10.1016/j.fitote.2006.11.008.10.1016/j.fitote.2006.11.00817336466Search in Google Scholar

[15] Sitara U, Hassan N, Naseem J. Antifungal activity of Aloe vera gel against plant pathogenic fungi. Pak J Bot. 2011;43(4):2231-3. Available from: http://www.pakbs.org/pjbot/PDFs/43(4)/PJB43(4)2231.pdf.Search in Google Scholar

[16] Barani K, Manipal S, Prabu D, Ahmed A, Adusumili P, Jeevika C. Antifungal activity of Morinda citrifolia (noni) extracts against Candida albicans: An in vitro study. Indian J Dent Res. 2014;25(2):188-90. DOI: 10.4103/0970-9290.135918.10.4103/0970-9290.13591824992849Search in Google Scholar

[17] Jayaraman SK, Manoharan MS, Illanchezian S. Antibacterial, antifungal and tumor cell suppression potential of Morinda citrifolia fruit extracts. Inter J Integr Biol. 2008;3(1):44-9. Available from: http://www.classicrus.com/IJIB/Arch/2008/1066.pdf.Search in Google Scholar

[18] Srinivasahan V, Durairaj B. Antimicrobial activities of hydroethanolic extract of Morinda citrifolia fruit. Int J Curr Microbiol App Sci. 2014;3(9);26-33. Available from: https://www.ijcmas.com/vol-3-9/Vennila%20Srinivasahan%20and%20Brindha%20Durairaj.pdf.Search in Google Scholar

[19] Usha R, Sashidharan S, Palaniswamy M. Antimicrobial activity of a rarely known species, Morinda citrifolia L. Ethnobot Leaflets. 2010;14:306-11. Available from: https://opensiuc.lib.siu.edu/cgi/viewcontent.cgi?article=1713&context=ebl.Search in Google Scholar

[20] Bhosale RP, Navgire KD, Rewale KA, Wahul SM. In vitro evaluation of various phytoextract against detected seed mycoflora of groundnut. Int J Curr Microbiol Appl Sci. 2018;7(10):1596-604. DOI: 10.20546/ijcmas.2018.710.180.10.20546/ijcmas.2018.710.180Search in Google Scholar

[21] Sunder J, Jeyakumar S, Kundu A, Srivastava RC, De AK. Effect of Morinda citrifolia extracts on in-vitro growth of Ralstonia solanacearum. Arch Appl Sci Res. 2011;3(3):394-402. Available from: https://www.researchgate.net/publication/267844467_Effect_of_Morinda_citrifolia_extracts_on_invitro_growth_of_Ralstonia_solanacearum.Search in Google Scholar

[22] Aji OR, Roosyidah LH. Antifungal activity of Morinda citrifolia leaf extract against Colletotrichum acutatum. Biogenesis. 2020;8(1):49-54. DOI: 10.24252/bio.v8i1.12009.10.24252/bio.v8i1.12009Search in Google Scholar

[23] Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M. Different modes of hydrogen peroxide action during seed germination. Front Plant Sci. 2016;7:66. DOI: 10.3389/fpls.2016.00066.10.3389/fpls.2016.00066Search in Google Scholar

[24] Martin NL, Bass P, Liss SN. Antibacterial properties and mechanism of activity of a novel silver-stabilized hydrogen peroxide. PLOS ONE. 2015;10(7):e0131345. DOI: 10.1371/journal.pone.0131345.10.1371/journal.pone.0131345Search in Google Scholar

[25] Vatansever F, de Melo WC, Avci P, Vecchio D, Sadasivam M, Gupta A, et al. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev. 2013;37(6):955-89. DOI: 10.1111/1574-6976.12026.10.1111/1574-6976.12026Search in Google Scholar

[26] Szopińska D, Jarosz M, Sławińska B. The effect of hydrogen peroxide on seed quality and emergence of carrot (Daucus carota L.). Acta Sci Pol Hortorum Cultus. 2017;16(2):21-33. Available from: http://wydawnictwo.up.wroc.pl/pl/action/getfull.php?id=5327.Search in Google Scholar

[27] Szopińska D. Effects of hydrogen peroxide treatment on the germination, vigour and health of Zinnia elegans seeds. Folia Hort. 2014;26(1):19-29. DOI: 10.2478/fhort-2014-0002.10.2478/fhort-2014-0002Search in Google Scholar

[28] Geetha HM, Shetty HS. Induction of resistance in pearl millet against downy mildew disease caused by Sclerospora graminicola using benzothiadiazole, calcium chloride and hydrogen peroxide - a comparative evaluation. Crop Prot. 2002;21(8):601-10. DOI: 10.1016/s0261-2194(01)00150-8.10.1016/S0261-2194(01)00150-8Search in Google Scholar

[29] Peng M, Kuc J. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology. 1992;82:696-9. Available from: https://www.apsnet.org/publications/phytopathology/backissues/Documents/1992Articles/Phyto82n06_696.PDF.10.1094/Phyto-82-696Search in Google Scholar

[30] Smilanick JL, Goates BJ, Denis-Arrue R, Simmons GT, Peterson GL, Henson DJ, et al. Germinability of Tilletia spp. teliospores after hydrogen peroxide treatment. Plant Dis. 1994;78(9):861-865. Available from: https://www.apsnet.org/publications/plantdisease/backissues/Documents/1994Articles/PlantDisease78n09_861.pdf.10.1094/PD-78-0861Search in Google Scholar

[31] Sharma S, Yadav S, Sibi G. Seed germination and maturation under the influence of hydrogene peroxide -a review. J Crit Rev. 2020;7(1):6-10. DOI: 10.22159/jcr.07.01.03.Search in Google Scholar

[32] Klein JD, Wood LA, Geneve RL. Hydrogen peroxide and color sorting improves germination and vigor of eastern gamagrass (Tripsacum dactyloides) seeds. Acta Hortic. 2008;782:93-8. DOI: 10.17660/ActaHortic.2008.782.8.10.17660/ActaHortic.2008.782.8Search in Google Scholar

[33] Dufková H, Berka M, Luklová M, Rashotte AM, Brzobohatý B, Cerný M. Eggplant germination is promoted by hydrogen peroxide and temperature in an independent but overlapping manner. Molecules. 2019;24;4270. DOI: 10.3390/molecules24234270.10.3390/molecules24234270693057131771170Search in Google Scholar

[34] Wahid A, Sehar S, Perveen M, Gelani S, Basra SMA, Farooq M. Seed pretreatment with hydrogen peroxide improves heat tolerance in maize at germination and seedling growth stages. Seed Sci Technol. 2008;36(3):633-45. DOI: 10.15258/sst.2008.36.3.13.10.15258/sst.2008.36.3.13Search in Google Scholar

[35] Conner PJ. Effects of stratification, germination temperature and pretreatment with gibberellic acid and hydrogen peroxide on germination of ‘Fry’ muscadine (Vitis rotundifolia) seed. HortSci. 2008;43(3):853-6. DOI: 10.21273/HORTSCI.43.3.853.10.21273/HORTSCI.43.3.853Search in Google Scholar

[36] Barba-Espín G, Hernández JA, Diaz-Vivancos P. Role of H2O2 in pea seed germination. Plant Signal Behav. 2012;7(2):193-5. DOI: 10.4161/psb.18881.10.4161/psb.18881340568822415047Search in Google Scholar

[37] Sasaki K, Kishtami S, Fumitaka A, Sato T. Promotion of seedling growth of seeds of rice (Oryza sativa L. cv. Hitomebore) by treatment with H2O2 before sowing. Plant Prod Sci. 2005;8(5):509-14. DOI: 10.1626/pps.8.509.10.1626/pps.8.509Search in Google Scholar

[38] Jaskani MJ, Kwon SW, Kim DH, Abbas H. Seed treatments and orientation affects germination and seedling emergence in tetraploid watermelon. Pakistan J Bot. 2006;38(1):89-98. Available from: http://www.pakbs.org/pjbot/PDFs/38(1)/PJB38(1)089.pdf.Search in Google Scholar

[39] Ogawa K, Iwabuchi M. A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant Cell Physiol. 2001;42(3):286-91. DOI: 10.1093/pcp/pce032.10.1093/pcp/pce03211266579Search in Google Scholar

[40] Ismail AA, Sidkey NM, Arafa RA, Fathy RM, El-Batal AI. Evaluation of in vitro activity of silver and selenium nanoparticles against Alternaria solani caused early blight disease on potato. British Biotechnol J. 2016;12(3):1-11. DOI: 10.9734/BBJ/2016/24155.10.9734/BBJ/2016/24155Search in Google Scholar

[41] Medda S, Hajra A, Dey U, Bose P, Mondal NK. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl Nanosci. 2015;5:875-80. DOI: 10.1007/s13204-014-0387-1.10.1007/s13204-014-0387-1Search in Google Scholar

[42] Pandey C, Khan E, Mishra A, Sardar M, Gupta M. Silver nanoparticles and its effect on seed germination and physiology in Brassica juncea L. (Indian mustard) plant. Adv Sci Lett. 2014;20(7/8/9):1673-6. DOI: 10.1166/asl.2014.5518.10.1166/asl.2014.5518Search in Google Scholar

[43] El-Kadi SM, Mahmoud MK, Sayed-Ahmed KA, El-Hendawy MA. Comparison between silver nanoparticles and silver nitrate as antifungal agent. Int J Nanosci Nanoeng (IJNN). 2018;4(1):5-11. Available from: http://www.openscienceonline.com/journal/archive2?journalId=731&paperId=4225.Search in Google Scholar

[44] Vishwakarma K, Shweta, Upadhyay N, Singh J, Liu S, Singh VP, et al. Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci. 2017;8:1-12 Art. No. 1501. DOI: 10.3389/fpls.2017.01501.10.3389/fpls.2017.01501564405229075270Search in Google Scholar

[45] International Rules for Seed Testing. Chapter 5: The germination test 2020;1:i-1-14. DOI: 10.15258/istarules.2020.05.10.15258/istarules.2020.05Search in Google Scholar

[46] International Rules for Seed Testing. Chapter 15: Seed vigour testing 2020;1:i-5-20. DOI: 10.15258/istarules.2020.15.10.15258/istarules.2020.15Search in Google Scholar

[47] Joosen RVL, Kodde J, Willems L, Ligterink W, van der Plas LHW, Hilhorst HWM. Germinator: A software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant J. 2010;62:148-59. DOI: 10.1111/j.1365-313X.2009.04116.x.10.1111/j.1365-313X.2009.04116.x20042024Search in Google Scholar

[48] International Rules for Seed Testing. Chapter 7: Validated Seed Health Testing Methods. 7-001a: Detection of Alternaria dauci in Daucus carota (carrot) seed by blotter method. Bassersdorf, Switzerland: International Seed Testing Association; 2020. Available from: https://www.seedtest.org/upload/cms/user/ISTASHmethods20207-001a.pdf.Search in Google Scholar

[49] International Rules for Seed Testing. Chapter 7: Validated Seed Health Testing Methods. 7-002a: Detection of Alternaria radicina in Daucus carota (carrot) seed by blotter method. Bassersdorf, Switzerland: International Seed Testing Association; 2020. Available from: https://www.seedtest.org/upload/cms/user/ISTASHmethods20207-002a.pdf.Search in Google Scholar

[50] Watanabe T. Pictorial Atlas of Soil and Seed Fungi Morphologies of Cultured Fungi and Key to Species. Boca Raton, London, New York, Washington: CRC Press; 2002. ISBN: 0849311187.10.1201/9781420040821Search in Google Scholar

[51] Mathur SB, Kongsdal O. Common laboratory seed health testing methods for detecting fungi. Bassersdorf, Switzerland: International Seed Testing Association; 2003, ISBN: 3906549356.Search in Google Scholar

[52] Aguilar CN, Rodríguez R, Gutiérrez-Sánchez G, Augur C, Favela-Torres E, Prado-Barragan LA, et al. Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol. 2007;76:47-59. DOI: 10.1007/s00253-007-1000-2.10.1007/s00253-007-1000-217530245Search in Google Scholar

[53] Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycological Res. 2005;109(2):150-8. DOI: 10.1017/S0953756204001352.10.1017/S0953756204001352Search in Google Scholar

[54] Oliveira M, Pereira C, Bessa C, Araujo R, Saraiva L. Hydrogen peroxide-induced secondary necrosis in conidia of Aspergillus fumigatus. Can J Microbiol. 2016;62:95-101. DOI: 10.1139/cjm-2015-0561.10.1139/cjm-2015-056126639790Search in Google Scholar

[55] Wojdyła AT. The possibility of using the preparation Huwa-San TR-50 in the protection of ornamental plants against leaf pathogens. Progress in Plant Protection/Postępy w Ochronie Roślin. 2012;52(1):106-11. Available from: https://pdfs.semanticscholar.org/529a/7fdad9b585ae67d80a8e387198a113b48c30.pdf.Search in Google Scholar

eISSN:
1898-6196
Language:
English