Open Access

Influence of Heavy Metal Concentration on Chlorophyll Content in Pleurozium schreberi Mosses


Cite

[1] Rajfur M. Algae - Heavy metals biosorbent. Ecol Chem Eng S. 2013;20(1):23-40. DOI: 10.2478/eces-2013-0002.10.2478/eces-2013-0002Search in Google Scholar

[2] Mahapatra B, Dhal NK, Dash AK, Panda BP, Panigrahi KCS, Pradhan A. Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism. Environ Sci Pollut Res. 2019;26:29620-38. DOI: 10.1007/s11356-019-06270-z.10.1007/s11356-019-06270-z31463756Search in Google Scholar

[3] Jóźwiak MA, Jóźwiak M. Influence of cement industry on accumulation of heavy metals in bioindicators. Ecol Chem Eng S. 2009;16:323-34. Available from: https://drive.google.com/file/d/16kMQeMGRupbWPc4yhlKh48Uy2wH3g2vG/view.Search in Google Scholar

[4] Zinicovscaia I, Urošević MA, Vergel K, Vieru E, Frontasyeva MV, Povar I, et al. Active moss biomonitoring of trace elements air pollution in Chisinau, Republic of Moldova. Ecol Chem Eng S. 2018;25:361-72. DOI: 10.1515/eces-2018-0024.10.1515/eces-2018-0024Search in Google Scholar

[5] Agnan Y, Séjalon-Delmas N, Claustres A, Probst A. Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Sci Total Environ. 2015;529:285-96. DOI: 10.1016/j.scitotenv.2015.05.083.10.1016/j.scitotenv.2015.05.08326026488Search in Google Scholar

[6] Wu Q, Xian Y, He Z, Zhang Q, Wu J, Yang G, et al. Adsorption characteristics of Pb(II) using biochar derived from spent mushroom substrate. Sci Rep. 2019;9:1-11. DOI: 10.1038/s41598-019-52554-2.10.1038/s41598-019-52554-2683158731690791Search in Google Scholar

[7] Mondal NK, Kundu M. Biosorption of fluoride from aqueous solution using lichen and its Ca-pretreated biomass. Water Conserv Sci Eng. 2016;1:143-60. DOI: 10.1007/s41101-016-0009-8.10.1007/s41101-016-0009-8Search in Google Scholar

[8] Konopka Z, Świsłowski P, Rajfur M. Biomonitoring of atmospheric aerosol with the use of Apis mellifera and Pleurozium schreberi. Chem Didact Ecol Metrol. 2019;24:107-16. DOI: 10.2478/cdem-2019-0009.10.2478/cdem-2019-0009Search in Google Scholar

[9] Yakovleva EV, Gabov DN, Beznosikov VA, Kondratenok BM. Accumulation of polycyclic aromatic hydrocarbons in soils and mosses of southern tundra at different distances from the thermal power plant. Eurasian Soil Sci. 2018;51:528-35. DOI: 10.1134/S1064229318030134.10.1134/S1064229318030134Search in Google Scholar

[10] Roblin B, Aherne J. Moss as a biomonitor for the atmospheric deposition of anthropogenic microfibres. Sci Total Environ. 2020;715:136973. DOI: 10.1016/j.scitotenv.2020.136973.10.1016/j.scitotenv.2020.13697332018105Search in Google Scholar

[11] Rühling A, Tyler G. An ecological approach to the lead problem. Bot Not. 1968;121:3.Search in Google Scholar

[12] Napa Ü, Kabral N, Liiv S, Asi E, Timmusk T, Frey J. Current and historical patterns of heavy metals pollution in Estonia as reflected in natural media of different ages: ICP Vegetation, ICP Forests and ICP Integrated Monitoring data. Ecol Indic. 2015;52:31-9. DOI: 10.1016/j.ecolind.2014.11.028.10.1016/j.ecolind.2014.11.028Search in Google Scholar

[13] ICP Vegetation. Heavy metals, nitrogen and POPs in European mosses: 2020 Survey. 2020. Available from: https://icpvegetation.ceh.ac.uk/sites/default/files/ICP%20Vegetation%20moss%20monitoring%20manual%202020.pdf.Search in Google Scholar

[14] Fernández JA, Boquete MT, Carballeira A, Aboal JR. A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation. Sci Total Environ. 2015;517:132-50. DOI: 10.1016/j.scitotenv.2015.02.050.10.1016/j.scitotenv.2015.02.05025725198Search in Google Scholar

[15] Ares A, Fernández JA, Carballeira A, Aboal JR. Towards the methodological optimization of the moss bag technique in terms of contaminants concentrations and replicability values. Atmos Environ. 2014;94:496-507. DOI: 10.1016/j.atmosenv.2014.05.066.10.1016/j.atmosenv.2014.05.066Search in Google Scholar

[16] Vuković G, Aničić Uroševic M, Razumenić I, Kuzmanoski M, Pergal M, Škrivanj S, et al. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring. Atmos Environ. 2013;85:31-40. DOI: 10.1016/j.atmosenv.2013.11.053.10.1016/j.atmosenv.2013.11.053Search in Google Scholar

[17] Markert B. From biomonitoring to integrated observation of the environment - The multi-markered bioindication concept. Ecol Chem Eng S. 2008;15:315-33. Available from: http://tchie.uni.opole.pl/freeECE/S_15_3/Markert_15(S3).pdf.Search in Google Scholar

[18] Capozzi F, Sorrentino MC, Di Palma A, Mele F, Arena C, Adamo P, et al. Implication of vitality, seasonality and specific leaf area on PAH uptake in moss and lichen transplanted in bags. Ecol Indic. 2020;108:105727. DOI: 10.1016/j.ecolind.2019.105727.10.1016/j.ecolind.2019.105727Search in Google Scholar

[19] Debén S, Fernández JA, Carballeira A, Aboal JR. Using devitalized moss for active biomonitoring of water pollution. Environ Pollut. 2016;210:315-22. DOI: 10.1016/j.envpol.2016.01.009.10.1016/j.envpol.2016.01.00926803787Search in Google Scholar

[20] Cesa M, Bizzotto A, Ferraro C, Fumagalli F, Luigi Nimis P. Oven-dried mosses as tools for trace element detection in polluted waters: A preliminary study under laboratory conditions. Plant Biosyst. 2011;145:832-40. DOI: 10.1080/11263504.2011.580790.10.1080/11263504.2011.580790Search in Google Scholar

[21] Chen Y, Yuan M, Zhang H, Zeng X, Liu H, Du X. Influences of cu and cr stress on antioxidant system and chlorophyll fluorescence in terrestrial moss taxiphyllum taxirameum. Fresenius Environ Bull. 2015;24:2211-9. https://www.prt-parlar.de/download/.Search in Google Scholar

[22] Rastogi A, Antala M, Gąbka M, Rosadziński S, Stróżecki M, Brestic M, et al. Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax). Sci Rep. 2020;10:1-9. DOI: 10.1038/s41598-020-65032-x.10.1038/s41598-020-65032-x724805832451474Search in Google Scholar

[23] Shakya K, Chettri MK, Sawidis T. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Arch Environ Contam Toxicol. 2008;54:412-21. DOI: 10.1007/s00244-007-9060-y.10.1007/s00244-007-9060-y17960450Search in Google Scholar

[24] Kováčik J, Klejdus B, Štork FŠ, Hedbavny J. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application. J Hazard Mater. 2012;239-240:175-82. DOI: 10.1016/j.jhazmat.2012.08.062.10.1016/j.jhazmat.2012.08.06222989857Search in Google Scholar

[25] Krzesłowska M, Rabęda I, Lewandowski M, Samardakiewicz S, Basińska A, Napieralska A, et al. Pb induces plant cell wall modifications - In particular - The increase of pectins able to bind metal ions level. E3S Web Conf. 2013;1:2-4. DOI: 10.1051/e3sconf/20130126008.10.1051/e3sconf/20130126008Search in Google Scholar

[26] Itouga M, Hayatsu M, Sato M, Tsuboi Y, Kato Y, Toyooka K, et al. Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS One. 2017;12:1-19. DOI: 10.1371/journal.pone.0189726.10.1371/journal.pone.0189726573808229261745Search in Google Scholar

[27] Aydoğan S, Erdağ B, Yildiz Aktaş L. Bioaccumulation and oxidative stress impact of Pb, Ni, Cu, and Cr heavy metals in two bryophyte species, Pleurochaete squarrosa and timmiella barbuloides. Turk J Botany. 2017;41:464-75. DOI: 10.3906/bot-1608-33.10.3906/bot-1608-33Search in Google Scholar

[28] Lin X, Chen L, Hu X, Feng S, Huang L, Quan G, et al. Toxicity of graphene oxide to white moss Leucobryum glaucum. RSC Adv. Royal Soc Chem. 2017;7:50287-93. DOI: 10.1039/c7ra10096e.10.1039/C7RA10096ESearch in Google Scholar

[29] Pradhan A, Kumari S, Dash S, Biswal DP, Dash AK, Panigrahi KCS. Heavy metal absorption efficiency of two species of mosses (Physcomitrella patens and Funaria hygrometrica) studied in mercury treated culture under laboratory condition. IOP Conf Ser Mater Sci Eng. 2017;225. DOI: 10.1088/1757-899X/225/1/012225.10.1088/1757-899X/225/1/012225Search in Google Scholar

[30] Ogunkunle CO, Ziyath AM, Rufai SS, Fatoba PO. Surrogate approach to determine heavy metal loads in a moss species - Barbula lambaranensis. J King Saud Univ. 2016;28:193-7. DOI: 10.1016/j.jksus.2015.11.002.10.1016/j.jksus.2015.11.002Search in Google Scholar

[31] González AG, Pokrovsky OS. Metal adsorption on mosses: Toward a universal adsorption model. J Colloid Interface Sci. 2014;415:169-78. DOI: 10.1016/j.jcis.2013.10.028.10.1016/j.jcis.2013.10.02824267345Search in Google Scholar

[32] Boquete MT, Aboal JR, Carballeira A, Fernández JA. Do mosses exist outside of Europe? A biomonitoring reflection. Sci Total Environ. 2017;593-594:567-70. DOI: 10.1016/j.scitotenv.2017.03.196.10.1016/j.scitotenv.2017.03.19628360006Search in Google Scholar

[33] Liepiņa L, Ievinsh G. Potential for fast chlorophyll a fluorescence measurement in bryophyte ecophysiology. Est J Ecol. 2013;62:137-49. DOI: 10.3176/eco.2013.2.05.10.3176/eco.2013.2.05Search in Google Scholar

[34] Świsłowski P, Kosior G, Rajfur M. The influence of preparation methodology on the concentrations of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ Sci Pollut Res. 2020. DOI: 10.1007/s11356-020-11484-7.10.1007/s11356-020-11484-7788437433161519Search in Google Scholar

[35] Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;11:591-2. Available from: https://portlandpress.com/biochemsoctrans/article-abstract/11/5/591/57549/Determinations-of-total-carotenoids-and?redirectedFrom=fulltext.10.1042/bst0110591Search in Google Scholar

[36] Thermo Fisher Scientific Inc. iCE 3000 Series AA Spectrometers Operator’s Manual. 2011;44:1-1 to 7-18. Available from: www.thermoscientific.comSearch in Google Scholar

[37] Krakovská AS, Svozilík V, Zinicovscaia I, Vergel K, Jančík P. Analysis of spatial data from moss biomonitoring in czech-polish border. Atmosphere. 2020;11:1-26. DOI: 10.3390/atmos11111237.10.3390/atmos11111237Search in Google Scholar

[38] Kosior G, Přibylová P, Vaňková L, Kukučka P, Audy O, Klánová J, et al. Bioindication of PBDEs and PCBs by native and transplanted moss Pleurozium schreberi. Ecotoxicol Environ Saf. 2017;143:136-42. DOI: 10.1016/j.ecoenv.2017.05.025.10.1016/j.ecoenv.2017.05.02528528316Search in Google Scholar

[39] Samecka-Cymerman A, Kosior G, Kolon K, Wojtuń B, Zawadzki K, Rudecki A, et al. Pleurozium schreberi as bioindicator of mercury pollution in heavily industrialized region. J Atmos Chem. 2013;70:105-14. DOI: 10.1007/s10874-013-9256-7.10.1007/s10874-013-9256-7Search in Google Scholar

[40] Rumyantsev IV, Dunaev AM, Frontasyeva MV, Ostrovnaya TM. Interspecies comparison of elemental content in moss From Ivanovo region determined by NAA and AAS. XXI Int Semin оn Interact Neutrons with Nucl (Fundamental Interact Neutrons, Nucl Struct Ultracold Neutrons, Relat Top Alushta, Ukr. 2013. Available from: http://isinn.jinr.ru/proceedings/isinn-21/pdf/rumyantsev.pdf.Search in Google Scholar

[41] Grimm A, Zanzi R, Björnbom E, Cukierman AL. Comparison of different types of biomasses for copper biosorption. Bioresour Technol. 2008;99:2559-65. DOI: 10.1016/j.biortech.2007.04.036.10.1016/j.biortech.2007.04.03617570656Search in Google Scholar

[42] Świsłowski P, Kříž J, Rajfur M. The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland. Ecol Chem Eng S. 2020;27(2):195-210. DOI: 10.2478/eces-2020-0013.10.2478/eces-2020-0013Search in Google Scholar

[43] Lequy E, Saby NPA, Ilyin I, Bourin A, Sauvage S, Leblond S. Spatial analysis of trace elements in a moss bio-monitoring data over France by accounting for source, protocol and environmental parameters. Sci Total Environ. 2017;590-591:602-10. DOI: 10.1016/j.scitotenv.2017.02.240.10.1016/j.scitotenv.2017.02.24028283296Search in Google Scholar

[44] Varela Z, Roiloa SR, Fernández JA, Retuerto R, Carballeira A, Aboal JR. Physiological and growth responses of transplants of the moss Pseudoscleropodium purum to atmospheric pollutants. Water Air Soil Pollut. 2013;224. DOI: 10.1007/s11270-013-1753-4.10.1007/s11270-013-1753-4Search in Google Scholar

[45] Urošević MA, Vuković G, Jovanović P, Vujičić M, Sabovljević A, Sabovljević M, et al. Urban background of air pollution: Evaluation through moss bag biomonitoring of trace elements in Botanical garden. Urban Urban Green. 2017;25:1-10. DOI: 10.1016/j.ufug.2017.04.016.10.1016/j.ufug.2017.04.016Search in Google Scholar

[46] Chen YE, Wu N, Zhang ZW, Yuan M, Yuan S. Perspective of monitoring heavy metals by moss visible chlorophyll fluorescence parameters. Front Plant Sci. 2019;10:1-7. DOI: 10.3389/fpls.2019.00035.10.3389/fpls.2019.00035635570030740119Search in Google Scholar

[47] Charron AJ, Quatrano RS. Between a rock and a dry place: The water-stressed moss. Mol Plant. 2009;2:478-86. DOI: 10.1093/mp/ssp018.10.1093/mp/ssp01819825631Search in Google Scholar

[48] Stanković JD, Sabovljević AD, Sabovljević MS. Bryophytes and heavy metals: A review. Acta Bot Croat. 2018;77:109-18. DOI: 10.2478/botcro-2018-0014.10.2478/botcro-2018-0014Search in Google Scholar

[49] Sokołowska K, Turzańska M, Nilsson MC. Symplasmic and apoplasmic transport inside feather moss stems of Pleurozium schreberi and Hylocomium splendens. Ann Bot. 2017;120(5):805-17. DOI: 10.1093/aob/mcx102.10.1093/aob/mcx102569186029028868Search in Google Scholar

eISSN:
1898-6196
Language:
English