1. bookVolume 27 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

The Use of Bark in Biomonitoring Heavy Metal Pollution of Forest Areas on the Example of Selected Areas in Poland

Published Online: 17 Jul 2020
Page range: 195 - 210
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English

In the year 2016, passive biomonitoring studies were conducted in the forest areas of southern and north-eastern Poland: the Karkonosze Mountains (Kark), the Beskidy Mountains (Beskid), Borecka Forest (P. Bor), Knyszynska Forest (P. Kny), and Białowieza Forest (P. Bia). This study used bark from the tree, Betula pendula Roth. Samples were collected in spring (Sp), summer (Su), and autumn (Au). Concentrations of Mn, Fe, Ni, Cu, Zn, Cd, and Pb were determined for the samples using the atomic absorption spectrometry method with flame excitation (F-AAS). Based on the obtained results, the studied areas were ranked according to level of heavy-metal deposition: forests of southern Poland > forests of north-eastern Poland. Some seasonal changes in the concentrations of metals accumulated in bark were also indicated, which is directly related to their changing concentrations in the air during the calendar year, for instance, the winter heating season produces higher concentrations of heavy metals in the bark samples taken in spring. When deciding to do biomonitoring studies using bark, but also other biological materials, it is necessary to take into account the period in which the conducted research is done and the time when the samples are taken for analysis, because this will have a significant impact on the obtained results.

Keywords

[1] Kłos A. Porosty w biomonitoringu środowiska (Lichens in environmental biomonitoring). Opole: University of Opole; 2009. ISBN: 9788373952607.Search in Google Scholar

[2] Kłos A, Rajfur M, Šramek I, Wacławek M. Mercury concentration in lichen, moss and soil samples collected from the forest areas of Praded and Glacensis Euroregions (Poland and Czech Republic). Environ Monit Assess. 2012;184:6765-74. DOI: 10.1007/s10661-011-2456-1.Search in Google Scholar

[3] Świsłowski P, Rajfur M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol Chem Eng S. 2018;25(4):557-68. DOI: 10.1515/eces-2018-0037.Search in Google Scholar

[4] Aleksiayenak Y, Frontasyeva M. A ten-year biomonitoring study of atmospheric deposition of trace elements at the territory of the Republic of Belarus. Ecol Chem Eng S. 2019;26(3):455-64. DOI: 10.1515/eces-2019-0034.Search in Google Scholar

[5] Ramachandra TV, Sudarshan PB, Mahesh MK, Vinay S. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. J Environ Manage. 2018;206:1204-10. DOI: 10.1016/j.jenvman.2017.10.014.Search in Google Scholar

[6] Meyer C, Diaz-de-Quijano M, Monna F, Franchi M, Toussaint ML, Gilbert D, et al. Characterisation and distribution of deposited trace elements transported over long and intermediate distances in north-eastern France using Sphagnum peatlands as a sentinel ecosystem. Atmos Environ. 2015;101:286-93. DOI: 10.1016/j.atmosenv.2014.11.041.Search in Google Scholar

[7] Allahabadi A, Ehrampoush MH, Miri M, Aval HE, Yousefzadeh S, Ghaffari HR, et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere. 2017;172:459-67. DOI: 10.1016/j.chemosphere.2017.01.045.Search in Google Scholar

[8] Matin G, Kargar N, Buyukisik HB. Bio-monitoring of cadmium, lead, arsenic and mercury in industrial districts of Izmir, Turkey by using honey bees, propolis and pine tree leaves. Ecol Eng. 2016;90:331-5. DOI: 10.1016/j.ecoleng.2016.01.035.Search in Google Scholar

[9] Song Y, Maher BA, Li F, Wang X, Sun X, Zhang H. Particulate matter deposited on leaf of five evergreen species in Beijing, China: source identification and size distribution. Atmos Environ. 2015;105:53-60. DOI: 10.1016/j.atmosenv.2015.01.032.Search in Google Scholar

[10] Cosma C, Iurian AR, Incze R, Kovacs T, Žunić ZS. The use of tree bark as long term biomonitor of 137Cs deposition. J Environ Radioactiv. 2016;153:126-33. DOI: 10.1016/j.jenvrad.2015.12.019Search in Google Scholar

[11] Belivermiş M, Kılıç Ö, Çotuk Y, Topcuoğlu S, Kalaycı G, Peştreli D. The usability of tree barks as long term biomonitors of atmospheric radionuclide deposition. App Radia Isotopes. 2010;68:2433-7. DOI: 10.1016/j.apradiso.2010.07.010.Search in Google Scholar

[12] Berlizov AN, Blum OB, Filby RH, Malyuk IA, Tryshyn VV. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Sci Total Environ. 2007;372:693-706. DOI: 10.1016/j.scitotenv.2006.10.029.Search in Google Scholar

[13] Forbes PBC, van der Wat L, Kroukamp EM. Chapter 3 - Biomonitors. In: Monitoring of Air Pollutants: Sampling, Sample Preparation and Analytical Techniques. Comprehensive Anal Chem. 2015;70:53-108. DOI: 10.1016/bs.coac.2015.09.003.Search in Google Scholar

[14] Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K. Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut. 2011;159:3560-70. DOI: 10.1016/j.envpol.2011.08.008.Search in Google Scholar

[15] Catinon M, Ayrault S, Spadini L, Boudouma O, Asta J, Tissut M, et al. Tree bark suber-included particles: a long-term accumulation site for elements of atmospheric origin. Atmos Environ. 2011;45:1102-9. DOI: 10.1016/j.atmosenv.2010.11.038.Search in Google Scholar

[16] Chiarantini L, Rimondi V, Benvenuti M, Beutel MW, Costagliola P, Gonnelli C, et al. Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci Total Environ. 2016;569-570:105-13. DOI: 10.1016/j.scitotenv.2016.06.029.Search in Google Scholar

[17] Minganti V, Drava G, Giordani P, Malaspina P, Modenesi P. Human contribution to trace elements in urban areas as measured in holm oak (Quercus ilex L.) bark. Environ Sci Pollut Res Int. 2016;23:12467-73. DOI: 10.1007/s11356-016-6485-8.Search in Google Scholar

[18] Khokhotva O, Waara S. The influence of dissolved organic carbon on sorption of heavy metals on urea-treated pine bark. J Hazard Mater. 2010;173:689-96. DOI: 10.1016/j.jhazmat.2009.08.149.Search in Google Scholar

[19] Cocozza C, Ravera S, Cherubini P, Lombardi F, Marchetti M, Tognetti R. Integrated biomonitoring of airborne pollutants over space and time using tree rings, bark, leaves and epiphytic lichens. Urban Forestry Urban Green. 2016;17:177-91. DOI: 10.1016/j.ufug.2016.04.008.Search in Google Scholar

[20] Drava G, Brignole D, Giordani P, Minganti V. Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark. Atmos Environ. 2016;144:370-5. DOI: 10.1016/j.atmosenv.2016.09.009.Search in Google Scholar

[21] Drava G, Anselmo M, Brignole D, Giordani P, Minganti V. Branch bark of holm oak (Quercus ilex L.) for reconstructing the temporal variations of atmospheric deposition of hexavalent chromium. Chemosphere. 2017;170:141-5. DOI: 10.1016/j.chemosphere.2016.12.012.Search in Google Scholar

[22] Sedumedi HN, Mandiwana KL, Ngobeni P, Panichev N. Speciation of Cr(VI) in environmental samples in the vicinity of the ferrochrome smelter. J Hazard Mater. 2009;172:1686-9. DOI: 10.1016/j.jhazmat.2009.07.111.Search in Google Scholar

[23] Dogan Y, Unver MC, Ugulu I, Calis M, Durkan N. Heavy metal accumulation in the bark and leaves of Juglans regia planted in Artvin City, Turkey. Biotechnol Biotechnol Equip. 2014;28:643-9. DOI: 10.1080/13102818.2014.947076.Search in Google Scholar

[24] Pacheco AMG, Freitas MC, Barros LIC, Figueira R. Investigating tree bark as an air-pollution biomonitor by means of neutron activation analysis. J Radioanal Nucl Chem. 2001;249:327-31. DOI: 10.1023/A:1013293814789.Search in Google Scholar

[25] Birke M, Rauch U, Hofmann F. Tree bark as a bioindicator of air pollution in the city of Stassfurt, Saxony-Anhalt, Germany. J Geochem Explor. 2018;187:97-117. DOI: 10.1016/j.gexplo.2017.09.007.Search in Google Scholar

[26] Pacheco AMG, Freitas MC, Baptista MS, Vasconcelos MTSD, Cabral IJP. Elemental levels in tree-bark and epiphytic-lichen transplants at a mixed environment in mainland Portugal, and comparisons with in situ lichen. Environ Pollut. 2008;151:326-33. DOI: 10.1016/j.envpol.2007.06.038.Search in Google Scholar

[27] Moreira TCL, de Oliveira RC, Lourenço Amato LF, Kang CM, Nascimento Saldiva PH, Saiki M. Intraurban biomonitoring: Source apportionment using tree barks to identify air pollution sources. Environ Int. 2016;91:271-5. DOI: 10.1016/j.envint.2016.03.005.Search in Google Scholar

[28] Nehrenheim E., Gustafsson JP. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments. Bioresour Technol. 2008;99:1571-7. DOI: 10.1016/j.biortech.2007.04.017.Search in Google Scholar

[29] Ribé V, Nehrenheim E, Odlare M, Gustavsson L, Berglind R, Forsberg Å. Ecotoxicological assessment and evaluation of a pine bark biosorbent treatment of five landfill leachates. Waste Manage. 2012;32:1886-94. DOI: 10.1016/j.wasman.2012.05.011.Search in Google Scholar

[30] Marć M, Tobiszewski M, Zabiegała B, Guardia MDL, Namieśnik J. Current air quality analytics and monitoring: A review. Anal Chim Acta. 2015;853:116-26. DOI: 10.1016/j.aca.2014.10.018.Search in Google Scholar

[31] Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke JW, et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ. 2018;627:438-49. DOI: 10.1016/j.scitotenv.2018.01.211.Search in Google Scholar

[32] iCE 3000 Series AA Spectrometers Operators Manuals. Cambridge: Thermo Fisher Scientific; 2011. http://photos.labwrench.com/equipmentManuals/9291-6306.pdf.Search in Google Scholar

[33] Konieczka P, Namieśnik J. Quality Assurance and Quality Control in the Analytical Chemical Laboratory. A Practical Approach. Second edition. London: CRC Press/Balkema; 2018. ISBN: 9781138196728Search in Google Scholar

[34] Klimek B, Tarasek A, Hajduk J. Trace element concentrations in lichens collected in the Beskidy Mountains, the Outer Western Carpathians. Bull Environ Contam Toxicol. 2015;94:532-6. DOI: 10.1007/s00128-015-1478-8.Search in Google Scholar

[35] Zakrzewska M, Klimek B. Trace element concentrations in tree leaves and lichen collected along a metal pollution gradient near Olkusz (Southern Poland). Bull Environ Contam Toxicol. 2018;100:245-9. DOI: 10.1007/s00128-017-2219-y.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo