Open Access

Free of Volatile Organic Compounds Protection against Moisture in Building Materials/Zabezpieczenia Przegród Budowlanych Przed Wilgocią Wolne Od Lotnych Związków Organicznych


Cite

[1] Köliö A, Pakkala TA, Lahdensivu J, Kiviste M. Durability demands related to carbonation induced corrosion for finnish concrete buildings in changing climate. Eng Structures. 2014;62-63:42-52. DOI: 10.1016/j.engstruct.2014.01.032.10.1016/j.engstruct.2014.01.032Search in Google Scholar

[2] Rokiel M. Hydroizolacje w budownictwie. Warszawa: Wyd. Medium; 2006.Search in Google Scholar

[3] Nayara SK, Bachmann J, Aguado A, Toralles-Carbonari B. Evaluation of the wettability of mortar component granular materials through contact angle measurements. Cement and Concrete Res. 2012;42:1611-1620. DOI: 10.1016/j.cemconres.2012.09.001.10.1016/j.cemconres.2012.09.001Search in Google Scholar

[4] MacMullen J, Zhang Z, Rirsch E, Dhakal HN, Bennett N. Brick and mortar treatment by cream emulsion for improved water repellence and thermal insulation. Energy and Buildings. 2011;34:1560-1565. DOI: 10.1016/j.enbuild.2011.02.014.10.1016/j.enbuild.2011.02.014Search in Google Scholar

[5] Abuku M, Janssen H, Roels S. Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption. Energy and Buildings. 2009;41:101-110. DOI: 10.1016/j.enbuild.2008.07.011.10.1016/j.enbuild.2008.07.011Search in Google Scholar

[6] Płuska I. Konserwacja kamienia w architekturze i rzeźbie. Renowacje i Zabytki. 2005;13(1):119-129.Search in Google Scholar

[7] Frattolillo A, Giovinco G, Mascolo MC, Vitale A. Effects of hydrophobic treatment on thermophysical properties of lightweight mortars. Experimental Thermal Fluid Sci. 2005;30:27-35.10.1016/j.expthermflusci.2004.12.006Search in Google Scholar

[8] Matziaris K, Stefanidou M, Karagiannis G. Impregnation and superhydrophobicity of coated porous low-fired clay building materials. Progress in Organic Coatings. 2011;72:181-192, DOI: 10.1016/2011.03.012.Search in Google Scholar

[9] Vejmelkova E, Konakova D, Čachova M, Keppert M, Černý R. Effect of hydrophobization on the properties of lime-metakaolin plasters. Construction Building Mater. 2012;37:556-561, DOI: 10.1016/2012.07.097.Search in Google Scholar

[10] Barnat-Hunek D, Klimek B. Hydrofobizacja cegły ręcznie formowanej. Materiały Budowlane. 2012;3:19-20.Search in Google Scholar

[11] Maravelaki-Kalaitzaki P. Hydraulic lime mortars with siloxane for waterproofing historic masonry. Cement Concrete Res. 2007;37:283-290. DOI: 10.1016/j.cemconres.2006.11.007.10.1016/j.cemconres.2006.11.007Search in Google Scholar

[12] Baltazar, L, Santana J, Lopes B, Correia JR, Rodrigues MP. Superficial protection of concrete with epoxy resin impregnations: influence of the substrate roughness and moisture. Materials and Structures/Materiaux et Constructions. 2014:1-16 (in press). DOI 10.1617/s11527-014-0284-9.10.1617/s11527-014-0284-9Search in Google Scholar

[13] Coronado MJA, García Santos A, Padial Molina JF. The influence of water-repellent products in the suction of ceramic brick face side. Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2013;52(4):XV-XVIII. DOI: 10.3989/cyv.2013.v52.i4.1221.10.3989/cyv.2013.v52.i4.1221Search in Google Scholar

[14] Felekoğlu B. A method for improving the early strength of pumice concrete blocks by using alkyl alkoxy silane (AAS). Construction Building Mater. 2012;28:305-310. DOI: 10.1016/2011.07.026.Search in Google Scholar

[15] Polverajan M, Avci S. Zero-VOC, nonionic associative rheology modifiers for the next generation of environmentally friendly coatings. Paint & Coatings Industry. 2012;28(3):20-26.Search in Google Scholar

[16] Chen SP, Liu WT, Ou-Yang CF, Chang JS, Wang JL. Optimizing the emission inventory of volatile organic compounds (VOCs) based on network observations. Atmospheric Environ. 2014;84:1-8. DOI: 10.1016/2013.10.059.Search in Google Scholar

[17] Faber J, Brodzik K, Gołda-Kopek A, Łomankiewicz D. Air pollution in new vehicles as a result of VOC emissions from interior materials. Polish J Environ Stud. 2013;22(6):1701-1709.Search in Google Scholar

[18] Zabiegała B. Organic compounds in indoor environments. Polish J Environ Stud. 2006;383(15):383-393.Search in Google Scholar

[19] Jones AP. Indoor air quality and health. Atmos Environ. 1999;4535(33).10.1016/S1352-2310(99)00272-1Search in Google Scholar

[20] Levin H. Indoor air pollutants. Part 1: General description of pollutants, levels and standards. Ventilation Information Paper 2. 2003.Search in Google Scholar

[21] Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC.Search in Google Scholar

[22] Osterholtz FD, Pohl ER. Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review. J Adhes Sci Technol. 1992;6: 127-149, DOI: 10.1163/156856192X0010610.1163/156856192X00106Search in Google Scholar

[23] Kaesler KH. Siloxanes: permanent protection for concrete. Surf Coat Inter. 2008;91(2):84-86.Search in Google Scholar

[24] Yoshinobu N, Yuji N, Hiroaki H, Syuji F, Mariko S. Surface analysis of silane nanolayer on silica particles using H Pulse NMR. J Adhesion Sci & Technol. 2011;25(19):2703-2716. DOI: 10.1163/016942411X556079.10.1163/016942411X556079Search in Google Scholar

[25] Tittarelli F, Moriconi G. The effect of silane-based hydrophobic admixture on corrosion of reinforcing steel in concreto. Cement Concrete Res. 2008;38:1354-1357. DOI: 10.1016/j.cemconres.2008.06.009.10.1016/j.cemconres.2008.06.009Search in Google Scholar

[26] Skierucha, W, Wilczek A. A FDR sensor for measuring complex soil dielectric permittivity in the 10-500 MHz frequency range. Sensors (Basel). 2010;10(4):3314-3329. DOI: 10.3390/s100403314.10.3390/s100403314327418322319300Search in Google Scholar

[27] Topp GC, Davis JL, Annan AP. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Res. 1980;16:574-582.10.1029/WR016i003p00574Search in Google Scholar

[28] Malicki MA, Plagge R, Roth CH. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. European J Soil Sci. 1996;47:357-366.10.1111/j.1365-2389.1996.tb01409.xSearch in Google Scholar

[29] Malicki MA, Skierucha W. A manually controlled TDR soil moisture meter operating with 300 ps rise-time needle pulse. Irrig Sci. 1989;10(2):153-163. DOI: 10.1007/BF00265691.10.1007/BF00265691Search in Google Scholar

[30] Suchorab Z, Sobczuk H, Rożej A, Łagód G. Comparison of reflectometric and gravimetric methods for examination of sewage sludge additions influence on water properties of reclamated soils. Ecol Chem Eng A. 2009;16(4):257-264.Search in Google Scholar

[31] Skierucha W, Wilczek A. Alokhina O. Calibration of a TDR probe for low soil water content measurements. Sensors and Actuators A. 2008;147:544-552. DOI: 10.1016/j.sna.2008.06.015.10.1016/j.sna.2008.06.015Search in Google Scholar

[32] Skierucha W, Wilczek A, Szypłowska A, Sławiński C, Lamorski K. A TDR-based soil moisture monitoring system with simultaneous measurement of soil temperature and electrical conductivity. Sensors (Basel). 2012;12(10):13545-66, DOI: 10.3390/s121013545.10.3390/s121013545354558023202009Search in Google Scholar

[33] Udawatta RP, Anderson SH, Motavalli PP, Garrett HE. Calibration of a water content reflectometer and soil water dynamics for an agroforestry practice. Agroforest Syst. 2011;82(1):61-75, DOI: 10.1007/s10457-010-9362-3.10.1007/s10457-010-9362-3Search in Google Scholar

[34] Černý R. Time-domain reflectometry method and its application for measuring moisture content in porous materials: A review. Measurement. 2009;42:329-336, DOI: 10.1016/2008.08.011.Search in Google Scholar

[35] Suchorab Z, Jarmuła M, Sobczuk H, Pavlík Z, Černý R. Zastosowanie metody TDR do pomiaru podciągania kapilarnego w ściance modelowej z cegły ceramicznej pełnej. Proc ECOpole. 2009;3(1):207-213. Search in Google Scholar

[36] Suchorab Z, Widomski M, Łagód G, Sobczuk H. Capillary rise phenomenon in aerated concrete. Monitoring and simulations. Proc ECOpole 2010;4(2):285-290.Search in Google Scholar

[37] Pavlík Z, Jiřičková M, Černý R, Sobczuk H, Suchorab Z. Determination of moisture diffusivity using the Time Domain Reflectometry (TDR) method. J Building Physics. 2006;30(1):59-70. DOI: 10.1177/1744259106064356.10.1177/1744259106064356Search in Google Scholar

[38] Suchorab Z, Sobczuk H, Černý R, Pavlik Z, Plagge R. Noninvasive moisture measurement of building materials using TDR method. Proc. of the 8th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, June 1-5, Espoo, Finland, 2009, 147-155.Search in Google Scholar

[39] EN 1936:2010. Natural stone test methods - Determination of real density and apparent density, and of total and open porosity.Search in Google Scholar

[40] Suchorab Z. Laboratory measurements of moisture in a model red-brick wall using the surface TDR probe. Proc ECOpole. 2013;7(1):171-176.Search in Google Scholar

[41] Suchorab Z, Jedut A, Sobczuk H. Water content measurement in building barriers and materials using surface TDR probe. Proc ECOpole. 2008;2(1):123-127. Search in Google Scholar

eISSN:
1898-6196
Language:
English