Cite

A. Rosinger, “Magnetic stirrer,” U.S. Patent 2350534A, June 6, 1944. Search in Google Scholar

K. H. Spitzer, G. Reiter, K. Schwerdtfeger, “Multi-frequency electromagnetic stirring of liquid metals,” ISIJ International, vol. 36, no. 5, pp. 487–492, 1996. https://doi.org/10.2355/isijinternational.36.487 Search in Google Scholar

T. J. Bruno and M. C. Rybowiak, “Vapor entraining magnetic mixer for reaction and equilibrium applications”, Fluid Phase Equilibria, vol. 178, no. 1–2, pp. 271–276, Mar. 2001. https://doi.org/10.1016/S0378-3812(00)00473-8 Search in Google Scholar

F. Barbeu, L. Bahoue, and S. Artemianov, “Energy cascade in a tornado wise flow generated by magnetic stirrer,” Energy Conversion and Management, vol. 43, no. 3, pp. 399–408, Feb. 2002. https://doi.org/10.1016/S0196-8904(01)00097-8 Search in Google Scholar

H. H. Sheu, S. Y. Jian, T. T. Lin, and Y. W. Lee, “Effect of rotational speed of an electromagnetic stirrer on neodymium-doped yttrium aluminium garnet nanoparticle size during co-precipitation,” Microelectronic Engineering, vol.: 176, pp. 33–39, 2017. https://doi.org/10.1016/j.mee.2017.01.020 Search in Google Scholar

M. M. Aboutalebi, F. Lapointe, J. D’amours, M. Isac, and R. I. L. Guthrie, “Numerical modelling of fluid flows in square billet moulds, using a new nozzle orientation in the presence of an in-mould rotary electromagnetic stirrer”, Ironmaking & Steelmaking, vol. 64, no. 9, pp. 819–826, Aug. 2019. https://doi.org/10.1080/03019233.2018.1510874 Search in Google Scholar

Y. Ege, O. Kalender, and S. Nazlibilek, “Electromagnetic stirrer operating in double axis”, IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2444–2453, Oct. 2010. https://doi.org/10.1109/TIE.2009.2034676 Search in Google Scholar

K. Bolotin, E. L. Shvidkii, I. Sokolov, and S. A. Bychkov, “Shape optimization of soft magnetic composite inserts for electromagnetic stirrer with traveling magnetic field”, Compel – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 39, no. 1, pp. 28–35, Mar. 2020. https://doi.org/10.1108/COMPEL-05-2019-0207 Search in Google Scholar

V. I. Milykh and L. V. Shilkova, “Numerical-field calculation of the angle torque characteristic of the three-phase inductor of the magnetic field of the electromagnetic stirrer in processing dissimilar mixtures,” Problemele Energeticıı Regionale, vol. 41, no. 1–2, pp. 55–64, Jun. 2019. https://doi.org/10.5281/zenodo.3239174 Search in Google Scholar

S.-H. Park, J.-W. Chin, K.-S. Cha, and M.-S. Lim, “Deep transfer learning-based sizing method of permanent magnet synchronous motors considering axial leakage flux,” IEEE Transactions on Magnetics, vol. 5, no. 9, Sep. 2022, Art. no. 8206005. https://doi.org/10.1109/TMAG.2022.3181804 Search in Google Scholar

K. Yamazaki, K. Utsunomiya, and H. Ohiwa, “Mechanism of torque ripple generation by time and space harmonic magnetic fields in permanent magnet synchronous motors,” IEEE Transactions on Industrial Electronics, vol. 69, no. 10, pp. 9884–9894, Oct. 2022. https://doi.org/10.1109/TIE.2021.3121713 Search in Google Scholar

M. Horiuchi, R. Masuda, Y. Bu, M. Nirei, M. Sato, and T. Mizuno, “Effect of magnetic wedge characteristics on torque ripple and loss in interior permanent magnet synchronous motor,” IEEJ Journal of Industry Applications, vol. 11, no. 1, pp. 49–58, 2022. https://doi.org/10.1541/ieejjia.21002574 Search in Google Scholar

H. Zhu and M. Wu, “Direct control of bearingless permanent magnet synchronous motor based on prediction model,” Progress in Electromagnetics Research M, vol. 101, pp. 127–139, 2021. https://doi.org/10.2528/PIERM20121401 Search in Google Scholar

T. Pei, D. Li, J. Liu, J. Li, and W. Kong, “Review of bearingless synchronous motors: Principle and topology,” IEEE Transactions on Transportation Electrification, vol. 8, no. 3, pp. 3489–3502, Sept. 2022. https://doi.org/10.1109/TTE.2022.3164420 Search in Google Scholar

O. Shariati, A. Behnamfar, and B. Potter, “An integrated elitist approach to the design of axial flux permanent magnet synchronous wind generators (AFPMWG),” Energies, vol. 15, no. 9, Apr. 2022, Art. no. 3262. https://doi.org/10.3390/en15093262 Search in Google Scholar

S. Zhang and F. L. Luo, “Direct control of radial displacement for bearingless permanent-magnet-type synchronous motors,” IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 542–552, Aug. 2009. https://doi.org/10.1109/TIE.2008.2003219 Search in Google Scholar

S. Javadi and M. Mirsalim, “A coreless axial flux permanent magnet generator for automotive applications,” IEEE Transaction on Magnetics, vol. 44, no. 12, pp. 4591–4598, Dec. 2008. https://doi.org/10.1109/TMAG.2008.2004333 Search in Google Scholar

A. A. Idyatulin, S. F. Saparulov, F. N. Saparulov, and S. M. Fatkullin, “Simulation of flank induction rotator of liquid metal,” Russian Electrical Engineering, vol. 80, no. 7, pp. 392–397, Oct. 2009. https://doi.org/10.3103/S1068371209070086 Search in Google Scholar

R. Nauber et al., “Dual-plane flow mapping in a liquid-metal model experiment with a square melt in a traveling magnetic field,” Experiments in Fluids, vol. 54, Apr. 2013, Art. no. 1502. https://doi.org/10.1007/s00348-013-1502-x Search in Google Scholar

J. Stiller, K. Koal, W. E. Nagel, J. Pal, and A. Cramer, “Liquid metal flows driven by rotating and traveling magnetic fields”, Eur. Phys. Journal Spec. Top., vol. 220, no. 1, Mar. 2013. https://doi.org/10.1140/epjst/e2013-01801-8 Search in Google Scholar

S. Denisov, M. E. Mann, and S. Y. Khripchenko, “MHD stirring of liquid metal in cilindrical mould with free surface,” Magnetohydrodynamics, vol. 33, no. 3, pp. 365–374, 1997. http://mhd.sal.lv/contents/1997/3/MG.33.3.9.R.html Search in Google Scholar

H. Branover et al., “On the potentialities of intensification of electromagnetic stirring of melts”, Magnetohydrodynamics, vol. 42, pp. 291–298, no. 2–3, Sep. 2006. https://ui.adsabs.harvard.edu/abs/2006MHD....42..291B/abstract Search in Google Scholar

I. Kolesnichenko, A. Pavlinov, and R. Khalilov, “Movement of the solid-liquid interface in gallium alloy under the action of rotating magnetic field,” Magnetohydrodynamics, vol. 49, no. 1–2, pp. 191–199, 2013. https://doi.org/10.22364/mhd.49.1-2.23 Search in Google Scholar

I. Kolesnichenko, A. Pavlinov, E. Golbraikh, P. Frick, A. Kapusta, and B. Mikhailovich, “The study of turbulence in MHD flow generated by rotating and traveling magnetic fields,” Experiments in Fluids, vol. 56, Apr. 2015, Art. no. 88. https://doi.org/10.1007/s00348-015-1957-z Search in Google Scholar

S. Taniguchi et al., “Electromagnetic stirring of liquid metal by simultaneous imposition of rotating and traveling magnetic fields,” Tetsuto-Hagane, vol. 92, no. 6, pp. 364–371, 2006. https://doi.org/10.2355/tetsutohagane1955.92.6_364 Search in Google Scholar

B. Mikhailovich, O. Ben-David, and A. Levy, “Liquid metal rotating flow under permanent magnetic system impact”, Magnetohydrodynamics, vol. 51, no. 1, pp. 171–177, 2015. https://doi.org/10.22364/mhd.51.1.16 Search in Google Scholar

P. Dold and K. W. Benz, “Rotating magnetic fields: Fluid flow and crystal growth applications”, Progress in Crystal Growth and Characterization of Materials, vol. 38, no. 1–4, pp. 39–58, 1999. https://doi.org/10.1016/S0960-8974(99)00007-8 Search in Google Scholar

O. Kalender and Y. Ege, “A PIC microcontroller based electromagnetic stirrer,” IEEE Transaction on Magnetics, vol. 43, no. 9, pp. 3579–3585, Sep. 2007. https://doi.org/10.1109/TMAG.2007.902825 Search in Google Scholar

S. Bicakci, “On the Implementation of Fuzzy VMC for an Under Actuated System,” IEEE Access, vol. 7, pp. 163578–163588, Nov. 2019. https://doi.org/10.1109/ACCESS.2019.2952294 Search in Google Scholar

R. Rakoczy, “Mixing energy investigations in a liquid vessel that is mixed by using a rotating magnetic fi eld,” Chemical Engineering and Processing: Process Intensification, vol. 66, pp. 1–11, Apr. 2013. https://doi.org/10.1016/j.cep.2013.01.012 Search in Google Scholar

R. Rakoczy, A. Przybył, M. Kordas, M. Konopacki, R. Drozd and K. Fijałkowski, “The study of influence of a rotating magnetic field on mixing efficiency,” Chemical Engineering and Processing: Process Intensification, vol. 112, pp. 1–8, Feb. 2017. https://doi.org/10.1016/j.cep.2016.12.001 Search in Google Scholar

eISSN:
2255-9159
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other