Cite

Seoudi RS, Del Borgo MP, Kulkarni K, Perlmutter P, Aguilar M-I, Mechler A. Supramolecular self-assembly of 14-helical nanorods with tunable linear and dendritic hierarchical morphologies. New J. Chem. 2015; 39 (5): 3280-3287. Search in Google Scholar

Mann S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 2009; 8 (10): 781-792. Search in Google Scholar

Boyle AL, Bromley EH, Bartlett GJ, Sessions RB, Sharp TH, Williams CL, Curmi PM, Forde NR, Linke H, Woolfson DN. Squaring the circle in peptide assembly: from fibers to discrete nanostructures by de novo design. J Am Chem Soc 2012; 134 (37): 15457-15467. Search in Google Scholar

Papapostolou D, Smith AM, Atkins ED, Oliver SJ, Ryadnov MG, Serpell LC, Woolfson DN. Engineering nanoscale order into a designed protein fiber. Proc Natl Acad Sci 2007; 104 (26): 10853-10858. Search in Google Scholar

Ryadnov MG, Woolfson DN. MaP peptides: programming the self-assembly of peptide-based mesoscopic matrices. J Am Chem Soc 2005; 127 (35): 12407-12415. Search in Google Scholar

Whitesides GM, Mathias JP, Seto CT Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures; DTIC Document: 1991. Search in Google Scholar

Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002; 295 (5564): 2418-2421. Search in Google Scholar

McMurry J. Organic Chemistry, Brooks. Cole, New York 1996: 657. Search in Google Scholar

Seebach D, Hook DF, Glättli A. Helices and other secondary structures of β- and γ- peptides. J Pept Sci 2006; 84 (1): 23-37. Search in Google Scholar

Yan X, Zhu P, Li J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 2010; 39 (6): 1877-1890. Search in Google Scholar

Kemp DS. Construction and Analysis of Lifson Roig Models for the Helical Conformations of α-Peptides. Helv. Chim. Acta 2002; 85 (12): 4392-4423. Search in Google Scholar

Werner HM, Horne WS. Folding and function in α/β-peptides: targets and therapeutic applications. Curr. Opin. Chem. Biol. 2015; 28: 75-82. Search in Google Scholar

Hughes AB, Amino Acids, Peptides and Proteins in Organic Chemistry, Analysis and Function of Amino Acids and Peptides. John Wiley & Sons: 2013; Vol. 5. Search in Google Scholar

Borenstein JT, Weinberg EJ, Orrick BK, Sundback C, Kaazempur-Mofrad MR, Vacanti JP. Microfabrication of three-dimensional engineered scaffolds. Tissue Eng. 2007; 13 (8): 1837-1844. Search in Google Scholar

Gopalan RD, Del Borgo MP, Mechler AI, Perlmutter P, Aguilar M-I. Geometrically Precise Building Blocks: the Self-Assembly of β-Peptides. Chem Biol 2015; 22 (11): 1417-1423. Search in Google Scholar

Uribe L, Gauss Jr, Diezemann G. Comparative Study of the Mechanical Unfolding Pathways of α-and β-Peptides. J Phys Chem B 2015; 119 (26): 8313-8320. Search in Google Scholar

Beke T, Somlai C, Perczel A. Toward a rational design of β-peptide structures. J. Comput. Chem. 2006; 27 (1): 20-38. Search in Google Scholar

Goodman CM, Choi S, Shandler S, DeGrado WF. Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol 2007; 3 (5): 252-262. Search in Google Scholar

Gellman SH. Foldamers: a manifesto. Acc. Chem. Res. 1998; 31 (4): 173-180. Search in Google Scholar

DeGrado W, Schneider J, Hamuro Y. The twists and turns of β-peptides. J. Pept. Res. 1999; 54 (3): 206-217. Search in Google Scholar

Craig CJ, Goodman JL, Schepartz A. Enhancing β3-Peptide Bundle Stability by Design. ChemBioChem 2011; 12 (7): 1035-1038. Search in Google Scholar

Seoudi RS, Hinds MG, Wilson DJ, Adda CG, Del Borgo M, Aguilar M-I, Perlmutter P, Mechler A. Self-assembled nanomaterials based on beta (β 3) tetrapeptides. J Nanotechnol 2016; 27 (13): 135606. Search in Google Scholar

Appella DH, Christianson LA, Klein DA, Powell DR, Huang X, Barchi Jr JJ, Gellman SH. Residue-based control of helix shape in beta-peptide oligomers. Nature 1997; 387 (6631): 381. Search in Google Scholar

Cheng RP, Gellman SH, DeGrado WF. β-Peptides: from structure to function. Chem. Rev. 2001; 101 (10): 3219-3232. Search in Google Scholar

Del Borgo MP, Mechler AI, Traore D, Forsyth C, Wilce JA, Wilce MC, Aguilar MI, Perlmutter P. Supramolecular Self-Assembly of N-Acetyl-Capped β-Peptides Leads to Nanoto Macroscale Fiber Formation. Angew. Chem. Int. Ed. 2013; 52 (32): 8266-8270. Search in Google Scholar

Seoudi RS, Dowd A, Smith BJ, Mechler A. Structural analysis of bioinspired nano materials with synchrotron far IR spectroscopy. PCCP 2016; 18 (16): 11467-11473. Search in Google Scholar

Seoudi RS, Dowd A, Del Borgo M, Kulkarni K, Perlmutter P, Aguilar M-I, Mechler A. Amino acid sequence controls the self-assembled superstructure morphology of N-acetylated tri-β3-peptides. Pure Appl. Chem. 2015; 87 (9-10): 1021-1028. Search in Google Scholar

Buchanan C, Garvey CJ, Perlmutter P, Mechler A. Co-assembly of helical β3-peptides: a self-assembled analogue of a statistical copolymer. Pure Appl. Chem. 2017; 89 (12): 1809-1816. Search in Google Scholar

Del Borgo MP. Supramolecular self-assembly of 14-helical nanorods with tunable linear and dendritic hierarchical morphologies. New J. Chem. 2015; 39 (5): 3280-3287. Search in Google Scholar

Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta biomaterialia 2014; 10 (6): 2341-2353. Search in Google Scholar

Rama G, Ardá A, Maréchal JD, Gamba I, Ishida H, Jiménez‐Barbero J, Vázquez ME, Vázquez López M. Stereoselective formation of chiral metallopeptides. Chem Eur J 2012; 18 (23): 7030-7035. Search in Google Scholar

Draxl C, Nabok D, Hannewald K. Organic/inorganic hybrid materials: Challenges for ab initio methodology. Acc. Chem. Res. 2014; 47 (11): 3225-3232. Search in Google Scholar

Kühnle A. Self-assembly of organic molecules at metal surfaces. Curr opin 2009; 14 (2): 157-168. Search in Google Scholar

Kawasaki M, Sato T, Tanaka T, Takao K. Rapid self-assembly of alkanethiol monolayers on sputter-grown Au (111). Langmuir 2000; 16 (4): 1719-1728. Search in Google Scholar

Cui Y, Kim SN, Naik RR, McAlpine MC. Biomimetic peptide nanosensors. Acc. Chem. Res. 2012; 45 (5): 696-704. Search in Google Scholar

Sharif AM, Laffir FR, Buckley DN, Silien C. Distinct self-assembly of dithiol monolayers on Au (111) in water and hexane. Chem. Phys. 2014; 441: 77-82. Search in Google Scholar

Hamoudi H, Guo Z, Prato M, Dablemont C, Zheng WQ, Bourguignon B, Canepa M, Esaulov VA. On the self assembly of short chain alkanedithiols. PCCP 2008; 10 (45): 6836-6841. Search in Google Scholar

Qu D, Kim B-C, Lee C-WJ, Ito M, Noguchi H, Uosaki K. 1, 6-Hexanedithiol self-assembled monolayers on Au (111) investigated by electrochemical, spectroscopic, and molecular mechanics methods. J Phys Chem C 2009; 114 (1): 497-505. Search in Google Scholar

Zhi Z, Hasan IY, Mechler A. Formation of alkanethiol supported hybrid membranes revisited. Biotechnol J 2018; 13 (12): 1800101. Search in Google Scholar

Nuzzo RG, Zegarski BR, Dubois LH. Fundamental studies of the chemisorption of organosulfur compounds on gold (111). Implications for molecular self-assembly on gold surfaces. J Am Chem Soc 1987; 109 (3): 733-740. Search in Google Scholar

Bourg M-C, Badia A, Lennox RB. Gold− sulfur bonding in 2D and 3D self-assembled monolayers: XPS characterization. The Journal of Physical Chemistry B 2000; 104 (28): 6562-6567. Search in Google Scholar

Buchanan C, Garvey CJ, Puskar L, Perlmutter P, Mechler A. Coordination crosslinking of helical substituted oligoamide nanorods with Cu (II). Supramol. Chem. 2020; 32 (3): 222-232. Search in Google Scholar

Buchanan C, Hinds MG, Puskar L, Garvey CJ, Mechler A. Comprehensive multidimensional study of the self-assembly properties of a three residue substituted β3 oligoamide. Pure Appl. Chem. 2021; 93 (11): 1327-1341. Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other