Open Access

Germination and early seedling growth in four Plantago species in response to Zn, Cu and Fe


Cite

Stobrawa K, Lorenc-Plucińska G. Thresholds of heavy-metal toxicity in cuttings of European black poplar (Populus nigra L.) determined according to antioxidant status of fine roots and morphometrical disorders. Sci Total Environ 2008, 390(1): 86–96. https://doi.org/10.1016/j.scitotenv.2007.09.024 Search in Google Scholar

Munzuroglu O, Geekil H. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyls growth in Triticum aestivum and Cucumis sativus. Arch Environ Contamin Toxicol 2002, 43: 203–213. https://doi.org/10.1007/s00244-1116-4 Search in Google Scholar

Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett 2010, 8(3): 199–216. https://doi.org/10.1007/s10311-010-0297-8 Search in Google Scholar

Boyd RS, Rajakaruna N. Heavy metal tolerance. In D. Gibson (Ed.), Oxford bibliographies in ecology 2013. New York: Oxford University Press. Search in Google Scholar

Seneviratne M, Rajakaruna N, Rizwan M.; et al. Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environ Geochem Health 2019, 41: 1813–1831. https://doi.org/10.1007/s10653-017-0005-8 Search in Google Scholar

Abirami K, Vikrant. Response of heavy metals stress during seed germination and early seedling growth in oil crop black sesame (Sesamum indicum L.). J stress physiol biochem 2023, 19(1): 28–42. Search in Google Scholar

Martínez-Guijarro R, Paches M, Romero I, Aguado D. Sources, mobility, reactivity, and remediation of heavy metal(loid) pollution: A review. Adv Environ Eng Res 2021, 2(4). https://doi.org/10.21926/aeer.2104033 Search in Google Scholar

Colombo C, Palumbo G, He JZ et al. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments 2014, 14: 538–548. https://doi.org/10.1007/s11368-013-0814-z Search in Google Scholar

McCall KA, Huang CC, Fierke CA. Function and mechanism of zinc metalloenzymes. J Nutr 2000, 130(5): 1437S–1446S. https://doi.org/10.1093/jn/130.5.1437S Search in Google Scholar

Hänsch R, Mendel RR. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 2009, 12(3): 259–266. https://doi.org/10.1016/j.pbi.2009.05.006 Search in Google Scholar

Kosesakal T, Unal M. Role of zinc deficiency in photosynthetic pigments and peroxidase activity of tomato seedlings. UFS J. Biol. 2009, 68(2): 113-120. Search in Google Scholar

Marichali A, Dallali S, Ouerghemmi S, Sebei H, Casabianca H, Hosni K. Responses of Nigella sativa L. to zinc excess: focus on germination, growth, yield and yield components, lipids and terpenes metabolisms, total phenolics and antioxidant activities. J Agric Food Chem 2016, 64: 1664–1675. https://doi.org/10.1021/acs.jafc.6b00274 Search in Google Scholar

Siedlecka A, Tukendorf A, Skórzyńska-Polit E, Maksymiec W, Wójcik M, Baszyński T, Krupa Z. Angiosperms (Aster-aceae Convolvulaceae Fabaceae and Poaceae; other than Brassicaceae). In: Metals in the Environment. Analysis by biodiversity. PRASAD M.N.V. (éd.), CRC Press, Taylor & Francis Group, 2001 New York (NY), États-Unis, Chap. 7: 171–217. Search in Google Scholar

Subba P, Mukhopadhyay M, Mahato SK, Bhutia KD, Mondal TK, Ghosh SK. Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiol. Mol. Biol. Plants 2014, 20(4): 461–473. https://doi.org/10.1007/s12298-014-0254-2 Search in Google Scholar

Balafrej H, Bogusz D, Triqui ZA, Guedira A, Bendaou N, Smouni A, Fahr M. Zinc hyperaccumulation in plants: A review. Plants 2020, 9: 562. https://doi.org/10.3390/plants9050562 Search in Google Scholar

Taiz L, Zeiger E. Plant Physiology. 3rd edn. Sinauer 2002, Sunderland. Search in Google Scholar

Reichman SM. The responses of plants to metal toxicity: A review focusing on Cu, manganese and zinc. The Australian Minerals and Energy Environment Foundation 2002, Melbourne. Search in Google Scholar

Påhlsson AB. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut 1989, 47: 287–319. Search in Google Scholar

Lewis CL, Jackson GP, Doorn SK, Majidi V, King FL. Spectral, spatial and temporal characterization of a millisecond pulsed glow discharge: copper analyte emission and ionization. Spectrochim. Acta Part B: At Spectrosc 2001, 56: 487–501. https://doi.org/10.1016/S0584-8547(01)00175-6 Search in Google Scholar

Morales F, Abadia A, Abadia J. Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol 1990, 94: 607–613. Search in Google Scholar

Donnini S, Castagna A, Guidi L, Zocchi G, Ranieri A. Leaf responses to reduced iron availability in two tomato genotypes: t3238 fer (iron efficient) and t3238 fer (iron inefficient). J Plant Nutr 2003, 26: 2137–2148. https://doi.org/10.1081/PLN-120024270 Search in Google Scholar

Donnini S, Castagna, A, Ranieri A, Zocchi G. Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. J Plant Physiol 2009, 166: 1181–1193. https://doi.org/10.1016/j.jplph.2009.01.007 Search in Google Scholar

Zahra N, Hafeez MB, Shaukat K, Wahid A, Hasanuzzaman M. Fe toxicity in plants: Impacts and remediation. Physiol Plant 2021, 173(1): 201–222. https://doi.org/10.1111/ppl.13361 Search in Google Scholar

Bhattacharya A, Routh J, Jacks G, Bhattacharya P, Mörth M. Environmental assessment of abandoned mine tailings in Adak, Västerbotten district (northern Sweden). Appl Geochem 2006, 21(10): 1760–1780. https://doi.org/10.1016/j.apgeochem.2006.06.011 Search in Google Scholar

van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 2013, 362(1–2): 319–334. https://doi.org/10.1007/s11104-012-1287-3 Search in Google Scholar

Ritcey GM. Tailings management in gold plants. Hydro-metallurgy 2005, 78(1-2): 3–20. https://doi.org/10.1016/j.hydromet.2005.01.001 Search in Google Scholar

Smuda J, Dold B, Spangenberg JE, Pfeifer HR. Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: Implications on sources and mobility of elements during transport and early stages of deposition. Chem Geol 2008, 256(1-2): 62–76. https://doi.org/10.1016/j.chemgeo.2008.08.001 Search in Google Scholar

Laghlimi M, Baghdad B, El Hadi H, Bouabdli A. Phytore-mediation mechanisms of heavy metal contaminated soils: A review. Open J Ecol 2015, 5(8): 375–388. https://doi.org/10.4036/oje.2015.58031 Search in Google Scholar

Oyuela-Leguizamo MA, Fernández-Gómez WD, Gutiérrez-Sarmiento MC. Native herbaceous plant species with potential use in phytoremediation of heavy metals spotlight on wetlands—A review. Chemosphere 2017, 168: 1230–1247. https://doi.org/10.1016/j.chemosphere.2016.10.075 Search in Google Scholar

Zhang H, Jiang L, Tanveer M, Ma J, Zhao Z, Wang L. Indexes of radicle are sensitive and effective for assessing copper and zinc tolerance in germinating seeds of Suaeda salsa. Agriculture 2020, 10: 445. https://doi.org/10.3390/agriculture10100445 Search in Google Scholar

Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, AI-Duaij OK. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ Chem Lett 2018, 16: 1339–1359. https://doi.org/10.1007/s10311-018-0762-3 Search in Google Scholar

Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M. Heavy metal stress and responses in plants. Int J Environ Sci Technol 2019, 16: 1807–1828. https://doi.org/10.1007/s13762-019-02215-8 Search in Google Scholar

Seregin IV, Ivanov VB. Physiological aspects of Cadmium and Lead toxic effects on higher plants. Russ J Plant Physio 2001, 48(4): 523–544. https://doi.org/10.1023/A:1016719901147 Search in Google Scholar

Macnair MR. The genetics of metal tolerance in vascular plants. New Phytol 1993, 124: 541–559. https://doi.org/10.1111/j.1469-8137.1993.tb03846.x Search in Google Scholar

Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 2016, 6: 1143. https://doi.org/10.3389/fpls.2015.01143 Search in Google Scholar

Serrano HC, Cotrim H, Pinto MJ, Martins-Loução MA, Branquinho C. Metal hyperaccumulation patterns within Plantago phylogeny (Plantaginaceae). Plant Soil 2017, 411: 227–241. https://doi.org/10.1007/s11104-016-3024-9 Search in Google Scholar

Dimitrova I, Yurukova L. Bioindication of anthropogenic pollution with Plantago lanceolata (Plantaginaceae): metal accumulation, morphological and stomatal leaf characteristics. Phytol Balc 2005, 11: 89–96. Search in Google Scholar

Turnau K, Jurkiewicz A, Lingua G, Barea J, Gianinazzi-Pearson V. Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites, Trace Elements in the Environment. CRC Press 2005, 235–252. https://doi.org/10.1201/97814203048.ch13 Search in Google Scholar

Baroni F, Boscagli A, Protano G, Riccobono F. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ Pollut 2000, 109: 347–352. https://doi.org/10.1016/S0269-7491(99)00240-7 Search in Google Scholar

Meharg AA, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 2002, 154: 29–43. https://doi.org/10.1046/j.1469-8137.2002.00363.x Search in Google Scholar

Othmani MA, Souissi F, Benzaazoua M, Bouzahzah H, Bussiere B, Mansouri A. The geochemical behaviour of mine tailings from the Touiref Pb–Zn district in Tunisia in weathering cells leaching tests. Mine Water Environ 2013, 32: 28–41. https://doi.org/10.1007/s10230-012-0210-8 Search in Google Scholar

Othmani MA, Souissi F, da Silva EF, Coynel A. Accumulation trends of metal contamination in sediments of the former Pb–Zn mining district of Touiref (NW Tunisia). J African Earth Sci 2015, 111: 231–243. https://doi.org/10.1016/j.jafrearsci.2015.07.007 Search in Google Scholar

Taib M. The mineral industry. U.S. Geological Survey Minerals Yearbook, 2015. Search in Google Scholar

Salah IB, Ben M’Barek Jemaï M, Mezza S. Boughdiri M. Geotechnical study of the Aptian Limestone of the Kef Region, Northwestern Tunisia: Evaluation for industrial use. Open J Geol 2018, 8: 1084–1101. https://doi.org/10.4236/ojg.2018.812066 Search in Google Scholar

Belhaj Ltaeif H, Sakhraoui A, Hassemer G, Castillo JM, Elimem M, Rouz S. Plantago tunetana (Plantaginaceae) in Tunisia: notes on its morphology, distribution, and ecology. Phytotaxa 2023, 600(3): 195–205. https://doi.org/10.11646/phytotaxa.600.3.6 Search in Google Scholar

Szarek-Łukaszewska G, Niklińska M. Concentration of alkaline and heavy metals in Biscutella Laevigata L. and Plantago lanceolata L. growing on calamine spoils (S. Poland). Acta Biol Crac Ser Bot 2002, 44: 29–38. Search in Google Scholar

Gucwa-Przepióra E, Nadgórska-Socha A, Fojcik B, Chmura D. Enzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress. Environ Sci Pollut Res 2016, 23: 4742–4755. https://doi.org/10.1007/s11356-015-5695-9 Search in Google Scholar

Pedról J. Plantago, L. Flora ibérica 13 Plantaginaceae-Scrophulariaceae; Benedí, C., Rico, E., Eds.; Real Jardín Botánico, CSIC: Madrid, Spain, 2009, 13: 4–38. Search in Google Scholar

ISTA. International Rules for Seed Testing. Basserdorf, 2003, Switzerland. Search in Google Scholar

Refka Z, Mustapha K, Ali F. Seed germination characteristics of Rhus tripartitum (Ucria) grande and Ziziphus lotus (L.): effects of water stress. Int J Ecol 2013, 7 pages. https://doi.org/10.1155/2013/819810 Search in Google Scholar

Ng V, Cribbie RA. Using the gamma generalized linear model for modeling continuous, skewed and heteroscedastic outcomes in psychology. Quantitative Methods Program, Department of Psychology, 2017, York University. Search in Google Scholar

Fatarna L, Boutekrabt A, Arabi Y, Adda A. Impact of cadmium, zinc and lead on seed germination of Atriplex halimus L. (Amaranthaceae). Rev Ecol 2017, 72: 61–72 (in French). Search in Google Scholar

Bezini E, Abdelguerfi A, Nedjimi B, Touati M, Adli B, Yabrir B. Effect of Some Heavy Metals on Seed Germination of Medicago arborea L. (Fabaceae). Agric conspec sci 2019, 84(4): 357–364. Search in Google Scholar

Abusriwil LMH, Hamuda B, Elfoughi AA. Seed germination, growth and metal uptake of Medicago sativa L. grown in heavy metal contaminated clay loam brown forest soil. Tájökológiai Lapok 2011, 89(1): 111–125. https://doi.org/1056617/tl.3901 Search in Google Scholar

Sharma S, Sharma P, Datta, SP, Gupta V. Morphological and biochemical response of Cicer arietinum L. var. pusa-256 towards an excess of zinc concentration. Life Sci j 2010, 7(1), 95–98. Search in Google Scholar

Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG. Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull Environ Contam Toxicol 2001, 66: 727–734. https://doi.org/10.1007/s00128-001-0069-z Search in Google Scholar

Li W, Khan MA, Yamaguchi S, Kamiya Y. Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regulation 2005, 46: 45–50. https://doi.org/10.1007/s10725-005-6324-2 Search in Google Scholar

Ozdener Y, Kutbay G. Toxicity of copper, cadmium, nickel, lead and zinc on seed germination and seedling growth in Eruca sativa. Fres Environ Bull 2009, 18(1): 26–31. Search in Google Scholar

Zhi Y, Deng ZH, Luo MD, Ding W, Hu YQ, Deng JF, Li YY, Zhao YP, Zhang XK, Wu WH, Huang, BQ. Influence of heavy metals on seed germination and early seedling growth in Eruca sativa Mill. Am J Plant Sci 2015, 6: 582–590. http://dx.doi.org/10.4236/ajps.2015.65063 Search in Google Scholar

Verma L, Pandey N. The effect of Fe toxicity on seed germination and early seedling growth of green gram (Vigna radiata L. Wilczek). Int J Sci Res 2017, 6: 1427–1430. Search in Google Scholar

Kranner I, Colville L. Review: Metals and seeds: Biochemical and molecular implications and their significance for seed germination. EEB 2011, 72(1): 93–105. https://doi.org/10.1016/j.envexpbot.2010.05.005 Search in Google Scholar

Chaignon V, Hinsinger PA. Biotest for evaluating copper bioavailability to plants in a contaminated soil. J Environ Qual 2003, 32: 824–833. https://doi.org/10.2134/jeq2003.8240 Search in Google Scholar

Sanjosé I, Muñoz-Rodríguez AF, Ruiz F, Navarro F, Gullón, ES, Nieva FJ, Polo A, Infante Izquierdo MD, Castillo JM. Metal effects on germination and seedling development in closely-related halophyte species inhabiting different elevations along the intertidal gradient. Mar Pollut Bull 2022, 175: 113375 https://doi.org/10.1016/j.marpolbul.2022.113375 Search in Google Scholar

Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M. et al. The effect of excess copper on growth and physiology of important food crops: A review. Environ Sci Pollut Res 2015, 22(11): 8148–8162. https://doi.org/10.1007/s11356-015-4496-5 Search in Google Scholar

El Rasafi T, Nouri M, Bouda S, Haddioui A. The Effect of Cd, Zn and Fe on seed germination and early seedling growth of wheat and bean. Ekológia (Bratislava) 2016, 35(3): 213–223. https://doi.org/10.1515/eko-2016-0017 Search in Google Scholar

El-Ghamery AA, El-Kholy MA, Abou El-Yousser MAA. Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutat Res 2003, 537: 29–41. https://doi.org/10.1016/s1383-5718(03)00052-4 Search in Google Scholar

Marschner, H. Mineral Nutrition of Higher Plants. Academic Press, London, 1995. Search in Google Scholar

Wang D, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 2009, 75: 1468–1476. https://doi.org/10.1016/j.chemosphere.2009.02.033 Search in Google Scholar

Feigl G, Lehotai N, Molnár Á, Ördög A, Rodríguez-Ruiz M, Palma JM, Corpas FJ, Erdei L, Kolbert Z. Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot 2015, 116: 613–625. https://doi.org/10.1093/aob/mcu246 Search in Google Scholar

Sheldon A, Menzies N. The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant and Soil 2005, 278: 341–349. https://doi.org/10.s11104-005-8815-3 Search in Google Scholar

Pichhod M, Nikhil K. Effect of copper mining dust on the soil and vegetation in India: A critical review. IJMSET 2015, 2(2): 73−76. Search in Google Scholar

Mahmood S, Hussain A, Saeed Z, Athar M. Germination and seedling growth of corn (Zea mays l.) under varying levels of copper and zinc. Autumn 2005, 2(3): 269−274. https://doi.org/10.1007/BF03325886 Search in Google Scholar

Infante-Izquierdo MD, Polo Ávila A, Sanjosé I, Castillo JM, Jiménez Nieva FJ, Grewell BJ, Muñoz Rodríguez AF. Effects of heavy metal pollution on germination and early seedling growth in native and invasive Spartina cordgrasses. Mar Pollut Bull 2020, 158: 111376. https://doi.org/10.1016/j. Search in Google Scholar

Thonta R, Pandey MK, Kumar R, Santhoshini. Studies on correlation and path coefficient for growth and yield attributes in green gram (Vigna radiata L. Wilczek). The Pharma Innovation Journal 2023, 12(6): 1910−1915. https://doi.org/10.22271/tpi.2023.v12.i6v.20691 Search in Google Scholar

De Dorlodot S, Lutts S, Bertin P. Effects of ferrous Fe toxicity on the growth and mineral composition of an inter-specific rice. J Plant Nutr 2005, 28(1): 1–20. https://doi.org/10.1081/PLN-200042144 Search in Google Scholar

Dobbss LB, Dos Santos TC, Pittarello M, de Souza SB, Ramos AC, Busato JG. Alleviation of iron toxicity in Schinus terebinthifolius Raddi (Anacardiaceae) by humic substances. Environ Sci Pollut Res 2018, 25: 9416–25. Search in Google Scholar

Habtamu A, Derara A, Tesfaye F. Effect of copper and zinc on seed germination, phytotoxicity, tolerance and seedling vigor of tomato (Lycopersicon esculentum L. cultivar Roma VF). Int J Agric Sci 2013, 2(11): 312−317. Search in Google Scholar

Shaikh IR, Shaikh PR, Shaikh RA, Shaikh AA. Phytotoxic effects of heavy metals (Cr, Cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded, India. Res j chem sci 2013, 3(6): 14−23. Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other