1. bookVolume 7 (2023): Issue 2 (April 2023)
Journal Details
First Published
30 Jan 2017
Publication timeframe
4 times per year
Open Access

Biotechnological Approaches to Generate Biogenic Solvents and Energy Carriers from Renewable Resources

Published Online: 15 Apr 2023
Volume & Issue: Volume 7 (2023) - Issue 2 (April 2023)
Page range: 96 - 120
Journal Details
First Published
30 Jan 2017
Publication timeframe
4 times per year

Songstad D., Lakshmanan P, Chen J, Gibbons W, Hughes S, Nelson R. Historical perspective of biofuels: learning from the past to rediscover the future. In Vitro Cell Dev Biol Plant 2009; 45(3): 189-192. Search in Google Scholar

Guo M, Song W, Buhain J. Bioenergy and biofuels: History, status, and perspective. Renew Sust Energ Rev 2015; 42: 712-725. Search in Google Scholar

Dürre P. Biobutanol: an attractive biofuel. Biotechnology Journal: Healthcare Nutrition Technology 2007; 2(12): 1525-1534. Search in Google Scholar

Mukherjee A, Koller M. Polyhydroxyalkanoate (PHA) biopolyesters - emerging and major products of Industrial Biotechnology. EuroBiotech J 2022; 6(2): 49-60. Search in Google Scholar

Koller M, Mukherjee A. Polyhydroxyalkanoates – linking properties, applications, and end-of-life options. Chem Biochem Eng Q 2020; 34(3): 115-129. Search in Google Scholar

Demirbas A. Biofuels securing the planet's future energy needs. Energy Convers Manag 2009; 50: 2239-2249. Search in Google Scholar

Kilian L. Oil price shocks: Causes and consequences. Annu Rev Resour Economics 2014; 6: 133-154. Search in Google Scholar

Aditiya HB, Mahlia TMI, Chong WT, Nur H,Sebayang, AH. Second generation bioethanol production: A critical review. Renew Sust Energ Rev 2016; 66: 631-653. Search in Google Scholar

Online resource https://sdgs.un.org/goals (access February 10th, 2023) Search in Google Scholar

Leong HY, Chang CK, Khoo KS, Chew KW, Chi SR, Lim JW, Chang JS, Show PL. Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnol Biofuels 2021; 14: 87. Search in Google Scholar

Gray KA, Zhao L, Emptage M. Bioethanol. Curr Opin Chem Biol 2006; 10(2): 141-146. Search in Google Scholar

Hossain N, Razali AN, Mahlia TMI, Chowdhury T, Chowdhury H, Ong HC, Shamsuddin AH, Silitonga AS. Experimental investigation, techno-economic analysis and environmental impact of bioethanol production from banana stem. Energies 2019; 12(20): 3947. Search in Google Scholar

Waltz E. Amylase corn sparks worries. Nat Biotechnol 2011; 29: 294. Search in Google Scholar

Sharma B, Larroche C, Dussap CG. Comprehensive assessment of 2G bioethanol production. Bioresour Technol 2020; 313: 123630. Search in Google Scholar

Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, Rodrigues K. F. Yeasts in sustainable bioethanol production: A review. Biochem Biophys Rep 2017; 10: 52-61. Search in Google Scholar

Larsen J, Østergaard Petersen M, Thirup L, Wen Li H, Krogh Iversen F. The IBUS process–lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 2008; 31(5): 765-772. Search in Google Scholar

Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 2018; 17(1): 1-21. Search in Google Scholar

Abdullah B, Syed Muhammad SAF, Shokravi Z, Ismai S., Kassim KA, Mahmood AN, Aziz MMA. Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sust Energ Rev 2019; 107: 37-50. Search in Google Scholar

Pfeiffer T, Morley A. An evolutionary perspective on the Crabtree effect. Front Mol Biosci 2014; 1: 17. Search in Google Scholar

Verduyn C, Zomerdijk TPL, Dijken JP, Scheffers WA. Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl Micro-biol Biotechnol 1984; 19: 181–185. Search in Google Scholar

Meyerhof O. Über den Einfluß des Sauerstoffs auf die alkoholische Gärung der Hefe. Naturwissenschaften 1925; 13: 980–984. Search in Google Scholar

Rocha-Arriaga C, Espinal-Centeno A, Martinez-Sanchez S, Caballero-Pérez J, Alcaraz LD, Cruz-Ramirez A. Deep microbial community profiling along the fermentation process of pulque, a major biocultural resource of Mexico. Microbiol Res 2020; 241: 126593. Search in Google Scholar

Panesar PS, Marwaha SS, Kennedy JF. Zymomonas mobilis: an alternative ethanol producer. J Chem Technol Biotechnol 2006; 81(4): 623-635. Search in Google Scholar

Sadik MW, Halema AA. Production of ethanol from molasses and whey permeate using yeasts and bacterial strains. Int J Curr Microbiol Appl Sci 2014; 3(3): 804-818. Search in Google Scholar

Maiti B, Rathore A, Srivastava S, Shekhawat M, Srivastava P. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm. Appl Microbiol Biotechnol 2011; 90(1): 385-395. Search in Google Scholar

Letti LAJ, Karp SG, Woiciechowski AL, Soccol CR. Ethanol production from soybean molasses by Zymomonas mobilis. Biomass Bioenergy 2012; 44: 80-86. Search in Google Scholar

Xia J, Yang Y, Li C.G, Yang S, Bai FW. Engineering Zymomonas mobilis for robust cellulosic ethanol production. Trends Biotechnol 2019; 37(9): 960-972. Search in Google Scholar

Mazaheri D, Pirouzi A. Valorization of Zymomonas mobilis for bioethanol production from potato peel: fermentation process optimization. Biomass Conv Bioref 2022; 12: 3389-3398. Search in Google Scholar

Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. Metabolic engineering of a pentose metabolism path-way in ethanologenic Zymomonas mobilis. Science 1995; 267(5195): 240-243. Search in Google Scholar

Bengelsdorf FR, Beck MH, Erz C, Hoffmeister S, Karl MM, Riegler P, Wirth S, Poehlein A, Weuster-Botz D, Dürre P. Bacterial anaerobic synthesis gas (syngas) and CO2+H2 fermentation. Adv Appl Microbiol 2008; 103: 143−221. Search in Google Scholar

Flüchter S, Follonier S, Schiel-Bengelsdorf B, Bengelsdor FR, Zinn M, Dürre P. Anaerobic production of poly(3-hydroxybutyrate) and its precursor 3-hydroxybutyrate from synthesis gas by autotrophic clostridia. Biomacromolecules 2019; 20(9): 3271-3282. Search in Google Scholar

Abubackar HN, Veiga MC, Kennes C. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Biore-sour Technol 2015; 186: 122-127. Search in Google Scholar

Sun X, Atiyeh HK, Zhang H, Tanner RS, Huhnke RL. Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar. Appl Energy 2019; 236: 1269-1279. Search in Google Scholar

Infantes A, Kugel M, Raffelt K, Neumann A. Side-by-side comparison of clean and biomass-derived, impurity-containing syngas as substrate for acetogenic fermentation with Clostridium ljungdahlii. Fermentation 2020; 6(3): 84. Search in Google Scholar

Song D, Yoon YG, Lee CJ. Techno-economic evaluation of the 2,3-butanediol dehydration process using a hydroxyapatite-alumina catalyst. Korean Journal of Chemical Engineering 2018; 35(12): 2348-2354. Search in Google Scholar

Liu X, Fabos V, Taylor SH, Knight DW, Whiston K, Hutchings GJ. One-step production of 1,3-butadiene from 2,3-butanediol dehydration. Chem Eur J 2016; 22(35): 12290-12294. Search in Google Scholar

Radoš D, Carvalho AL, Wieschalka S, Neves AR, Eikmanns PBJ, Blombach B, Santos H. Engineering Coryne-bacterium glutamicum for the production of 2,3-butane-diol. Microb Cell Factories 2015; 14: 171. doi: 10.1186/s12934-015-0362-x. Open DOISearch in Google Scholar

Li ZJ, Jian J, Wei XX, Shen XW, Chen GQ. Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition. Appl Microbiol Biotechnol 2010; 87(6): 2001-2009. Search in Google Scholar

Bartowsky EJ, Henschke PA. The ‘buttery’ attribute of wine-diacetyl-desirability, spoilage and beyond. Int J Food Microbiol 2004; 96: 235–252. Search in Google Scholar

Celińska E, Grajek W. Biotechnological production of 2,3-butanediol - current state and prospects. Biotechnol Adv 2009; 27: 715-725. Search in Google Scholar

Gräfje H, Körnig W, Weitz HM, Reiß W, Steffan G, Diehl H, Bosche H, Schneider K, Kieczka H, Pinkos R. Butane-diols, butenediol, and butynediol. In: Ullmann's Encyclopedia of Industrial Chemistry, 2000; 1-12: https://doi.org/10.1002/14356007.a04_455.pub2 Search in Google Scholar

Harden A, Walpole GS. Chemical action of Bacillus lactis aerogenes (Escherich) on glucose and mannitol: production of 2: 3-butyleneglycol and acetylmethylcarbinol. Proc R Soc 1906; 77(519): 399-405. Search in Google Scholar

Harden A, Norris D. The bacterial production of acetylmethylcarbinol and 2.3-butylene glycol from various substances. Proc R Soc 1912; 84(574): 492-499. Search in Google Scholar

Fulmer EI, Christensen LM, Kendali AR. Production of 2, 3-butylene glycol by fermentation. Ind Eng Chem 1933; 25(7): 798-800. Search in Google Scholar

Savakis PE, Angermayr SA, Hellingwerf KJ. Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria. Metab Eng 2013; 20: 121–130. Search in Google Scholar

Online resource: LanzaTech. World’s first commercial waste gas to ethanol plant starts up http://www.lanzatech.com/worlds-first-commercial-wastegas-ethanol-plant-starts/, 2018 (accessed April 15, 2021). Search in Google Scholar

Tinôco D, Borschiver S, Coutinho PL, Freire DM. Technological development of the bio-based 2,3-butanediol process. Biofuel Bioprod Biorefin 2021; 15: 357–376. Search in Google Scholar

Ji XJ, Huang H, Ouyang PK. Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnol Adv 2011; 29(3): 351-364. Search in Google Scholar

Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P. Enhanced 2, 3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 2009; 82(1): 49-57. Search in Google Scholar

Nakashimada Y, Kanai K, Nishio N. Optimization of dilution rate, pH and oxygen supply on optical purity of 2,3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnol Lett 1998; 20(12): 1133-1138. Search in Google Scholar

Białkowska AM. Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J Microbiol Biotechnol 2016; 32(12): 1-14. Search in Google Scholar

Cao N, Xia Y, Gong CS, Tsao GT. Production of 2, 3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulase. In: Davison, B.H., Wyman, C.E., Finkelstein, M. (eds.). Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology, vol 63-65. 1997; Humana Press. pp. 129-139. https://doi.org/10.1007/978-1-4612-2312-2_13 Search in Google Scholar

Pasaye-Anaya L, Vargas-Tah A, Martínez-Cámara C, Castro-Montoya AJ, Campos-García J. Production of 2,3-butanediol by fermentation of enzymatic hydrolysed bagasse from agave mezcal-waste using the native Klebsiella oxytoca UM2-17 strain. J Chem Technol Biotechnol 2019; 94(12): 3915-3923. Search in Google Scholar

González-García Y, Grieve J, Meza-Contreras JC, Clifton-García B, Silva-Guzman JA. Tequila agave bagasse hydrolysate for the production of polyhydroxybutyrate by Burkholderia sacchari. Bioengineering 2019; 6(4): 115. Search in Google Scholar

Yuan J, He YZ, Guo ZW, Gao HF, Chen FB, Li LZ, Li Y-Y, Zhang LY. Utilization of sweet sorghum juice for efficient 2,3-butanediol production by Serratia marcescens H30. BioResources 2017; 12(3): 4926-4942. Search in Google Scholar

Jurchescu IM, Hamann J, Zhou X, Ortmann T, Kuenz A, Prüße U, Lang S. Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 2013; 97(15): 6715-6723. Search in Google Scholar

Erian AM, Freitag P, Gibisch M, Pflügl S. High rate 2, 3-butanediol production with Vibrio natriegens. Bioresource Technology Reports 2020; 10: 100408. Search in Google Scholar

Fernández-Gutierrez D, Veillette M, Ramirez AA, Giroir-Fendler A, Faucheux N, Heitz, M. Production of 2,3-butanediol from diverse saccharides via fermentation. Can J Chem Eng 2020; 98(1): 54-61. Search in Google Scholar

Sathesh-Prabu C, Kim D, Lee SK. Metabolic engineering of Escherichia coli for 2,3-butanediol production from cellulosic biomass by using glucose-inducible gene expression system. Bioresour Technol 2020; 309: 123361. Search in Google Scholar

Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 2011; 77(15): 5467-5475. Search in Google Scholar

Chen J-S, Hiu SF. Acetone–butanol–isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum). Biotechnol Lett 1986; 8: 371–376. Search in Google Scholar

Green EM. Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 2011; 22(3): 337-343. Search in Google Scholar

Huzir NM, Aziz MMA, Ismail SB, Abdullah B, Mahmood NAN, Umor NA, Muhammad SAFAS. Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation. Renew Sust Energ Rev 2018; 94: 476-485. Search in Google Scholar

Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by Clostridia. Biotechnol Bioeng 2008; 101(2): 209-228. Search in Google Scholar

Anandharaj SJ, Gunasekaran J, Udayakumar GP, Megana-than Y, Sivarajasekar N. Biobutanol: Insight, Production and Challenges. In: Sivasubramanian V., Pugazhendhi A., Moorthy I. (eds.). Sustainable Development in Energy and Environment. Springer Proceedings in Energy. Springer, Singapore, 2020: pp. 25-37. https://doi.org/10.1007/978-981-15-4638-9_3 Search in Google Scholar

Uyttebroek M, Van Hecke W, Vanbroekhoven K. Sustainability metrics of 1-butanol. Catal 2015; 239: 7-10. Search in Google Scholar

von Kutepow N, Kindler H. Die Alkoholsynthese nach W. Reppe. Angew Chem 1960; 72(22): 802-805. Search in Google Scholar

Akgül A, Palmeiro-Sanchez T, Lange H, Magalhaes D, Moore S, Paiva A, Kazanç F, Trubetskaya, A. Characterization of tars from recycling of PHA bioplastic and synthetic plastics using fast pyrolysis. J Hazard Mater, 2022; 439, 129696. Search in Google Scholar

Dürre P. Fermentative butanol production: bulk chemical and biofuel. Ann N Y Acad Sci 2008; 1125(1): 353-362. Search in Google Scholar

Pasteur L. Quelques résultats nouveaux relatifs aux fermentations acétique et butyrique. Bull Soc Chim Fr 1862 : 52–53. Search in Google Scholar

Bunch AW. How biotechnology helped maintain the supply of acetone for the manufacture of cordite during World War I. Int J Eng Technol 2014; 84(2): 211-226. Search in Google Scholar

Dürre P. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 1998; 49(6): 639-648. Search in Google Scholar

Zhang X, Feng X, Zhang H, Wei Y. Utilization of steam-exploded corn straw to produce biofuel butanol via fermentation with a newly selected strain of Clostridium acetobutylicum. BioResources 2018; 13(3): 5805-5817. Search in Google Scholar

Qureshi N, Blaschek HP. Economics of butanol fermentation using hyper-butanol producing Clostridium beijerinckii BA101. Food Bioprod Process 2000; 78(3), 139-144. Search in Google Scholar

Qureshi N, Ezeji TC. Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuel Bioprod Biorefin 2008; 2(4): 319-330. Search in Google Scholar

Ezeji T, Blaschek HP. Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Biore-sour Technol 2008; 99(12): 5232-5242. Search in Google Scholar

Noomtim P, Cheirsilp B. Production of butanol from palm empty fruit bunches hydrolyzate by Clostridium acetobutylicum. Energy Procedia 2011; 9: 140-146. Search in Google Scholar

Lu C, Zhao J, Yang ST, Wei D. Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol 2012; 104: 380-387. Search in Google Scholar

Zhang J, Wang M, Gao M, Fang X, Yano S, Qin S, Xia R. Efficient acetone–butanol–ethanol production from corn-cob with a new pretreatment technology - wet disk milling. BioEnergy Res 2013; 6(1): 35-43. Search in Google Scholar

Amiri H, Karimi K, Zilouei H. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour Technol 2014; 152: 450-456. Search in Google Scholar

Kiyoshi K, Furukawa M, Seyama T, Kadokura T, Nakazato A, Nakayama S. Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum. Bioresour Technol 2015; 186: 325-328. Search in Google Scholar

Khedkar MA, Nimbalkar PR, Kamble SP, Gaikwad SG, Chavan PV, Bankar S.B. Process intensification strategies for enhanced holocellulose solubilization: Beneficiation of pineapple peel waste for cleaner butanol production. J Clean Prod 2018; 199: 937-947. Search in Google Scholar

Phillips JA, Humphrey AE. An overview of process technology for the production of liquid fuels and chemical feedstocks via fermentation. In: Wise DL (ed) Organic chemicals from biomass. Benjamins/Cummings Publishing, Menlo Park, Calif., 1983: pp 249–304 Search in Google Scholar

Chen CK, Blaschek HP. Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 1999; 52(2): 170-173. Search in Google Scholar

Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 2009; 11(4-5): 284-291. Search in Google Scholar

Pfromm PH, Amanor-Boadu V, Nelson R, Vadlani P, Madl R. Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenergy 2010; 34(4): 515-524. Search in Google Scholar

Lee I, Johnson LA, Hammond EG. Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J Am Oil Chem Soc 1995; 72: 1155–1160. Search in Google Scholar

Rassadin V, Shlygin OY, Likhterova N, Slavin V, Zharov A. Problems in production of high-octane, unleaded automotive gasolines. Chem Tech Fuels Oil 2006; 42: 235–242. Search in Google Scholar

Chen H, Zhou Z, He J, Zhang P, Zhao X. Effect of isopropanol and n-pentanol addition in diesel on the combustion and emission of a common rail diesel engine under pilot plus main injection strategy. Energy Reports 2020; 6: 1734-1747. Search in Google Scholar

Zhang C, Li T, He J. Characterization and genome analysis of a butanol–isopropanol-producing Clostridium beijerinckii strain BGS1. Biotechnol Biofuels 2018; 11: 280. Search in Google Scholar

Osburn O, Brown R, Werkman C. The butyl alcohol–isopropyl alcohol fermentation. J Biol Chem 1937; 121: 685–695. Search in Google Scholar

Wang C, Xin F, Kong X, Zhao J, Dong W, Zhang W, Ma J, Wu H, Jiang M. Enhanced isopropanol–butanol–ethanol mixture production through manipulation of intracellular NAD (P) H level in the recombinant Clostridium acetobutylicum XY16. Biotechnol Biofuels 2018; 11(1): 1-10. Search in Google Scholar

Koller M, Maršálek L, Miranda de Sousa Dias M, Braun-egg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol 2017; 37(A): 24-38. Search in Google Scholar

Koller M. Chemical and biochemical engineering approaches in manufacturing polyhydroxyalkanoate (PHA) biopolyesters of tailored structure with focus on the diversity of building blocks. Chem Biochem Eng Q 2018; 32(4): 413-438. Search in Google Scholar

Zhang X, Luo R, Wang Z, Deng Y, Chen, G-Q. Application of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuels. Biomacromolecules 2009; 10(4): 707-711. Search in Google Scholar

Wang SY, Wang Z, Liu MM, Xu Y, Zhang XJ, Chen G-Q. Properties of a new gasoline oxygenate blend component: 3-hydroxybutyrate methyl ester produced from bacterial poly-3-hydroxybutyrate. Biomass Bioenergy 2010; 34(8): 1216-1222. Search in Google Scholar

Siow HS, Sudesh K, Murugan P, Ganesan S. Mealworm (Tenebrio molitor) oil characterization and optimization of the free fatty acid pretreatment via acid-catalyzed esterification. Fuel 2021; 299: 120905. Search in Google Scholar

Chee JY, Lakshmanan M, Jeepery IF, Hairudin NHM, Sudesh K. The potential application of Cupriavidus necator as polyhydroxyalkanoates producer and single cell protein: A review on scientific, cultural and religious perspectives. Appl Food Biotechnol 2019; 6(1): 19-34. Search in Google Scholar

Recommended articles from Trend MD