Open Access

The Microbially Extended Phenotype of Plants, a Keystone against Abiotic Stress


Cite

1. Kassen R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 2002; 15:173-190.10.1046/j.1420-9101.2002.00377.x Search in Google Scholar

2. Elewa AMT & Joseph R. The History, Origins, and Causes of Mass Extinctions. J Cosmol 2009); 2: 201-220. Search in Google Scholar

3. Raup D, Sepkowski JJ. Mass Extinctions in the Marine Fossil Record. Science 1982; 215:1501-1503. doi: 10.1126/science.215.4539.150117788674 Open DOISearch in Google Scholar

4. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, et al. Global Biodiversity: Indicators of Recent Declines. Science 2010; 328:1164-1168. doi: 10.1126/science.118751220430971 Open DOISearch in Google Scholar

5. IPCC. Climate Change 2021. Intergovernmental Panel on Climate Change, Switzerland 202110.1017/9781009157988 Search in Google Scholar

6. Scheffers BR, De Meester L, Bridge TCL, et al. The broad footprint of climate change from genes to biomes to people. Science 2016; 354(6313):aaf7671.10.1126/science.aaf767127846577 Search in Google Scholar

7. Breazeale JF. A study of the toxicity of salines that occur in black alkali soils. Ariz Agr Exp Sta Tech Bul 2021; 14:337-357. Search in Google Scholar

8. Imran QM, Falak N, Hussain A, Mun B-G, Yun B-W. Abiotic Stress in Plants; Stress Perception to Molecular Response and Role of Biotechnological Tools in Stress Resistance. Agronomy 2021; 11:1579. doi: 10.3390/agronomy11081579. Open DOISearch in Google Scholar

9. Boyer JS. Plant productivity and environment. Science 1982; 218:443-448. doi: 10.1126/science.218.4571.443.17808529 Open DOISearch in Google Scholar

10. He M, He C-Q, Ding N-Z. Abiotic stresses: general defences of land plants and chances for engineering multistress tolerance. Front Plant Sci 2018; 9:1771. doi: 10.3389/fpls.2018.01771.629287130581446 Open DOISearch in Google Scholar

11. Martí MC, Stancombe MA, Webb AAR. Cell- and Stimulus Type-Specific Intracellular Free Ca2+ Signals in Arabidopsis. Plant Physiol 2013; 163:625-634. doi: 10.1104/pp.113.222901379304324027243 Open DOISearch in Google Scholar

12. Liu Q, Ding Y, Shi Y, Ma L, Wang Y, et al. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. The EMBO J 2021; 40:e104559.10.15252/embj.2020104559780978633372703 Search in Google Scholar

13. Zhang H, Zhu J, Gong Z, Zhu J-K. Abiotic stress in plants. Nat Rev Genet 2022; 23:104-119. doi: 10.1038/s41576-021-00413-034561623 Open DOISearch in Google Scholar

14. Jung J-H, Domijan M, Klose C, Biswas S, Ezer D, et al. Phytochromes function as thermosensors in Arabidopsis. Science 2016; 354:886-889.10.1126/science.aaf600527789797 Search in Google Scholar

15. Legris M, Klose C, Burgie AE, et al. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 2016; 354:897-900.10.1126/science.aaf565627789798 Search in Google Scholar

16. Krishna P. Plant response to heat stress. In: Hirt H, Shinozaki K, eds. Plant Responses to Abiotic Stress, Topics in Current Genetics; 2004:73-101.10.1007/978-3-540-39402-0_4 Search in Google Scholar

17. Alvarez-Ponce D, Ruiz-González MX, Vera-Sirera F, Feyertag F, Perez-Amador MA, Fares MA. Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions. Int J Mol Sci 2018; 19:2276.10.3390/ijms19082276612153130081447 Search in Google Scholar

18. Kai H & Iba K. Temperature stress in Plants. In eLS; John Wiley & Sons, Chichester; 2014.10.1002/9780470015902.a0001320.pub2 Search in Google Scholar

19. Hu Y & Schmidhalter U. Limitation of salt stress to plant growth. In Hock B, Elsner EF, eds. Plant Toxicology 4th ed. Boca Raton, FL, CRC Press; 2004:191-22410.1201/9780203023884.ch5 Search in Google Scholar

20. Daliakopoulos IN, Tsanis IK, Koutroulis A, et al. The threat of soil salinity: A European scale review. Sci Total Environ 2016; 573: 727-739.10.1016/j.scitotenv.2016.08.17727591523 Search in Google Scholar

21. Parihar P, Singh S, Singh R, Singh, VP, Prasad SM. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 2015; 22:4056–4075.10.1007/s11356-014-3739-125398215 Search in Google Scholar

22. Harper RJ, Dell B, Ruprecht JK, Sochacki SJ & Smetten KRJ. Salinity and the reclamation of salinized lands. In: Stanturf JA, Callahan Jr MA eds. Soils and Landscape Restoration. Academic Press, Elsevier, 2021:193-208.10.1016/B978-0-12-813193-0.00007-2 Search in Google Scholar

23. Al-shareef NO, Tester M. Plant Salinity Tolerance. In: eLS. John Wiley & Sons, Ltd: Chichester 2019. doi:10.1002/9780470015902.a0001300.pub310.1002/9780470015902.a0001300.pub3 Search in Google Scholar

24. Kumar A, Singh S, Gaurav AK, Srivastava S & Verma JP. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Front Microbiol 2020; 11:1216.10.3389/fmicb.2020.01216 Search in Google Scholar

25. Roy SJ, Negrao S, Tester M. Salt resistant crop plants. Curr Op Biotechnol 2014; 26:115–124. doi: 10.1016/j.cop-bio.2013.12.004 Open DOISearch in Google Scholar

26. Molden D, Vithanage M, de Fraiture C, et al. Availability and Its Use in Agriculture. In: Wilderer P, ed. Treatise on Water Science, Elsevier; 2011:707–732.10.1016/B978-0-444-53199-5.00108-1 Search in Google Scholar

27. Farooq M, Hussain M, Wahid A & Siddique KHM. Drought stress in plants: an overview. In: Aroca R ed. Plant responses to drought stress, Springer. 2012.10.1007/978-3-642-32653-0_1 Search in Google Scholar

28. Zargar SM, Gupta N, Nazir M, et al. Impact of drought on photosynthesis: Molecular perspective. Plant Gene 2017; 11:154-159. doi: 10.1016/j.plgene.2017.04.00 Open DOISearch in Google Scholar

29. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003; 218:1-14. doi: 10.1007/s00425-003-1105-5 Open DOISearch in Google Scholar

30. Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 2000; 5(12):537-542.10.1016/S1360-1385(00)01797-0 Search in Google Scholar

31. Boscaiu M, Lull C, Lidón A, et al. Plant responses to abiotic stress in their natural habitats. Bull UASVM, Horticulture 2008; 65:53-58. Search in Google Scholar

32. Bradshaw AD. Evolutionary Significance of Phenotypic Plasticity in Plants. Adv Genet 1965; 13:115–155. doi: 10.1016/s0065-2660(08)6004 Open DOISearch in Google Scholar

33. Bonnier G. Les plantes de la région alpine et leurs rapports avec le climat. Ann Géograph 1895; 4(17):393-413. doi: https://doi.org/10.3406/geo.1895.5724.10.3406/geo.1895.5724 Search in Google Scholar

34. Matesanz S, Gianoli E, Valladares F. Global change and the evolution of phenotypic plasticity in plants. Ann NY Acad Sci 2010; 1206:35-55. doi: 10.1111/j.1749-6632.2010.05704.x20860682 Open DOISearch in Google Scholar

35. Schlichting, C. D. 1986. The Evolution of Phenotypic Plasticity in Plants. Ann. Rev. Ecol. Syst. 17, 667–693. doi: 10.1146/annurev.es.17.1101 Open DOISearch in Google Scholar

36. Gordo, O. & Sanz J. J. 2010. Impact of climate change on plant phenology in Mediterranean ecosystems. Global change Biol. 16, 1082-1106. doi: 10.1111/j.1365-2486.2009.02084.x Open DOISearch in Google Scholar

37. Meier U, Bleiholder H, Buhr L, et al. The BBCH system to coding the phenological growth stages of plants – history and publications – J KULTURPFL 2009; 61(2):S41–52. Search in Google Scholar

38. Bradley NL, Leopold AC, Ross J & Huffaker W. Phenological changes reflect climate change in Wisconsin. PNAS 1999; 96:9701-9704. doi: 10.1073/pnas.96.17.97012227310449757 Open DOISearch in Google Scholar

39. Fitter AH & Fitter RSR. Rapid Changes in Flowering Time in British Plants. Science 2002; 296: 1689-1691. doi: 10.1126/science.107161 Open DOISearch in Google Scholar

40. Lee HK, Lee SJ, Kim MK & Lee SD. Prediction of Plant Phenological Shift under Climate Change in South Korea. Sustainability 2020; 12:9276.10.3390/su12219276 Search in Google Scholar

41. Primack RB, Ibáñez I, Higuchi H, et al. Spatial and interspecific variability in phenological responses to warming temperatures. Biol Conserv 2009; 142:2569-2577. doi: 10.1016/j.biocon.2009.06.003 Open DOISearch in Google Scholar

42. Bond WJ. Keystone Species. In: Schulze E-D et al. eds. Biodiversity and Ecosystem Function, Springer-Verlag Berlin Heidelberg, 1994:237–253. doi: 10.1007/978-3-642-58001-7_11. Open DOISearch in Google Scholar

43. Rawat US; Agarwal NK. Biodiversity: Concept, threats and conservation. Environ Conserv J 2015; 16:9-28. doi: 10.36953/ECJ.2015.16303 Open DOISearch in Google Scholar

44. Costanza R, et al. The value of the world’s ecosystem services and natural capital. Nature 1997; 387:253-260.10.1038/387253a0 Search in Google Scholar

45. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Sillman BR. The value of estuarine and coastal ecosystem services. Ecol Mon 2011; 81(2):169-193.10.1890/10-1510.1 Search in Google Scholar

46. Gedan KB, Silliman BR & Bertness MD. Centuries of human-driven change in salt marsh ecosystems. Annu Rev Mar Sci 2009; 1:117–41.10.1146/annurev.marine.010908.16393021141032 Search in Google Scholar

47. Adams JB, Raw JL, Riddin T, Wasserman J, Van Niekerk L.. Salt marsh restoration for the provision of multiple ecosystem services. Diversity 2021; 13:680. doi: 10.3390/d13120680 Open DOISearch in Google Scholar

48. Stevanović ZD, Aćić S, Stešević D, Luković M, Šilc U. Halophytic vegetation in South-east Europe: Classification, conservation and ecogeographical patterns. In: Hasanuzzaman M, Shabala S, Fujita M, eds. Halophytes and climate change. CAB International, UK; 2019:55-68.10.1079/9781786394330.0055 Search in Google Scholar

49. Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature 2001; 409:1092-1101.10.1038/3505921511234023 Search in Google Scholar

50. Galuzzi G, Seyoum A, Halewood M, López Noriega I & Welch EW. The Role of Genetic Resources in Breeding for Climate Change: The Case of Public Breeding Programmes in Eighteen Developing Countries. Plants 2020; 9:1129. doi: 10.3390/plants9091129756978032878309 Open DOISearch in Google Scholar

51. Passamonti MM, Somenzi E, Barbato M, et al. The Quest for Genes Involved in Adaptation to Climate Change in Ruminant Livestock. Animals 2021; 11:2833. doi: 10.3390/ani11102833853262234679854 Open DOISearch in Google Scholar

52. Carroll G. Fungal Endophytes in Stems and Leaves: From Latent Pathogen to Mutualistic Symbiont. Ecology 1988; 69:2–9. doi: 10.2307/1943154 Open DOISearch in Google Scholar

53. Rodriguez RJ, White Jr JF, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. New Phytol 2009; 182:314-330. doi: 10.1111/j.1469-8137.2009.02773.x19236579 Open DOISearch in Google Scholar

54. Bonfante P & Anca I-A. Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annu Rev Microbiol 2009; 63:363-383. doi: 10.1146/annurev.micro.091208.07350419514845 Open DOISearch in Google Scholar

55. Redecker D, Kodner R, Graham LE. Glomalean Fungi from the Ordovician. Science 2000; 289:1920-1921. doi: 10.1126/science.289.5486.19 Open DOISearch in Google Scholar

56. van der Heijden MGA, Klironomos JN, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998; 396:69-72.10.1038/23932 Search in Google Scholar

57. Chen M, Arato M, Borghi L, Nouri E & Reinhardt D. Beneficial services or arbuscular mycorrhizal fungi – From ecology to application. Front Plant Sci 2018; 9:1270.10.3389/fpls.2018.01270613219530233616 Search in Google Scholar

58. Hardoim PR, et al. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015; 79:293-320. doi: 10.1128/MMBR.00050-14.448837126136581 Open DOISearch in Google Scholar

59. Link HF. Observationes in ordines plantarum naturales, dissertatio prima, complectens anandrarum ordines Epiphytas, Mucedines, Gastromycos et Fungos. Der Gesellschaft Naturforschender Freunde zu Berlin, Berlin, Germany. 1809:3-42. https://hdl.handle.net/2027/hvd.32044106318025 Search in Google Scholar

60. Berch SM, Massicotte HB & Tackaberry LE. Re-publication of a translation of ‘The vegetative organs of Monotropa hypopitys L.’ published by F. Kamienski in 1882, with an update on Monotropa mycorrhizas. Mycorrhiza 2005; 15:323-332. doi: 10.1007/s00572-004-0334-1.15549481 Open DOISearch in Google Scholar

61. Frank AB. Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 1885; 3: 128–145. Search in Google Scholar

62. Woronin MS. Über die bei der schwarzerle (Alnus glutinosa) und der gewöhnlichen garten-lupine (Lupinus mutabilis) auftretenden Wurzelaufschwellungen. Mém de l’Acad Imp des Sciences de St-Petersbourg 1866; X6. Search in Google Scholar

63. Marquez LM, Redamn RS, Rodriguez RJ, Roossinck MJ. A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance. Science 2007; 315:513-515. doi: 10.1126/science.113623717255511 Open DOISearch in Google Scholar

64. Roossinck MJ. The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 2011; 9: 99-108. doi: 10.1038/nr-micro2491 Open DOISearch in Google Scholar

65. Lata R, Chowdhury S, Gond S K, White Jr JF. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett. Appl. Microbiol. 2018; 66:268-276. Search in Google Scholar

66. Drobeck M, Frac M & Cybulska J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019; 9:335. doi: 10.3390/agronomy9060335 Open DOISearch in Google Scholar

67. Poveda J. Beneficial effects of microbial volatile compounds (MVOCs) in plants. Appl Soil Ecol 2021; 168:104118. doi: 10.1016/j.apsoil.2021.104118 Open DOISearch in Google Scholar

68. Povero G, Mejoa JF, Di Tommaso D, Piaggesi A, Warrior P. A systematic approach to discover and characterize natural plant Biostimulants. Front Plant Sci 2016; 7:435.10.3389/fpls.2016.00435482045627092156 Search in Google Scholar

69. Akiyama K, Matsuzaki K-I, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005; 435:824-827.10.1038/nature0360815944706 Search in Google Scholar

70. Gutjar C & Parniske M. Cell and Developmental Biology of Arbuscular Mycorrhiza Symbiosis. Annu Rev Cell Dev Biol 2013; 29:593–617.10.1146/annurev-cellbio-101512-12241324099088 Search in Google Scholar

71. Souza R, Ambrosini A, Passagliaa LMP. Plant growth-promoting bacteria as inoculants in agriculture soils. Genet Mol Biol 2015; 38 (4):401-419.10.1590/S1415-475738420150053476332726537605 Search in Google Scholar

72. Lee E-H, Eo J-K, Ka K-H & Eom A-H. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 2013; 41(3):121-125.10.5941/MYCO.2013.41.3.121381722524198665 Search in Google Scholar

73. Garbaye J. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 1994; 128:197–210.10.1111/j.1469-8137.1994.tb04003.x33874371 Search in Google Scholar

74. Brundrett MC. Coevolution of roots and mycorrizas of land plants. New Phytol 2002; 154:275-304.10.1046/j.1469-8137.2002.00397.x33873429 Search in Google Scholar

75. Brundrett MC, Terdersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 2018; 220:1108–1115.10.1111/nph.1497629355963 Search in Google Scholar

76. Leroy C, Séjalon-Delmas N, Jauneau A, Ruiz-González MX, et al. Trophic mediation by a fungus in an ant–plant mutualism. J Ecol 2011; 99:583-590. doi: 10.1111/j.1365-2745.2010.01763.x Open DOISearch in Google Scholar

77. Moore D, Robson GD, Trinci APJ. 21st Century Guidebook to Fungi, 2019.10.1017/9781108776387 Search in Google Scholar

78. Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D & Wipf D. Agroecology: the key role of arbuscular mycorrhizas in ecosystems services. Mycorrhiza 2010; 20:519-530.10.1007/s00572-010-0333-320697748 Search in Google Scholar

79. Goh C-H, Veliz Vallejos DF, Nicotra AB & Mathesius U. The impact of beneficial plant-associated microbes on plant phenotypic plasticty. J Chem Ecol 2013; 39:826-839.10.1007/s10886-013-0326-8373883823892542 Search in Google Scholar

80. Poudel M, Mendes R, Costa LAS, et al. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front Microbiol 2021; 12:743512. doi: 10.3389/fmicb.2021.743512857335634759901 Open DOISearch in Google Scholar

81. Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 2002; 12:185-90.10.1007/s00572-002-0170-012189473 Search in Google Scholar

82. Augé RM. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001; 11:3-42.10.1007/s005720100097 Search in Google Scholar

83. Carvalho LM, Correia PM, Caçador I & Martins-Louçao AM. Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils 2003; 38:137-143.10.1007/s00374-003-0621-6 Search in Google Scholar

84. Lubna, Muhammad AK, Sajjad A, Rahmatullah J, Muhammad W, Kyung-Min K & In-Jung L. Endophytic fungus Bi-polaris sp. CSL-1 induces salt tolerance in Glycine max.L via modulating its endogenous hormones, antioxidative system and gene expression. J Plant Interact 2022; 17: 319-332. doi: 10.1080/17429145.2022.2036836. Open DOISearch in Google Scholar

85. Qing L, Zhehong H, Caisheng D, Kuan-Hung L, Shumei H & ShiPeng C. Endophytic Klebsiella sp. San01 promotes growth performance and induces salinity and drought tolerance in sweet potato (Ipomoea batatas L.), J Plant Interact 2022; 17: 608-619. doi: 10.1080/17429145.2022.2077464 Open DOISearch in Google Scholar

86. O’Brien AM, Ginnan NA, Rebolleda-Gómez M, Wagner MR. Microbial effects on plant phenology and fitness. Am J Bot 2021; 108:1824–1837. doi: 10.1002/ajb2.174334655479 Open DOISearch in Google Scholar

87. Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 2014; 17:717-726. doi: 10.1111/ele.12276404835824698177 Open DOISearch in Google Scholar

88. Orozco-Mosqueda MC, Fadiji AE, Babalola OO, Glick BR & Santoyo G. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res 2022; 263: 127137. doi: 10.1016/j.micres.2022.12713735905581 Open DOISearch in Google Scholar

89. Glick BR. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 2010; 28:367-374.10.1016/j.biotechadv.2010.02.00120149857 Search in Google Scholar

90. Qian S, Xiaoshuang S, Xun D, Jiayu L, Junkai W, Kai M & Ruiqing S. Effects of plant growth promoting Rhizobacteria microbial on the growth, rhizosphere soil properties, and bacterial community of Pinus sylvestris var. mongolica seedlings. Scand J For Res 2021; 36: 249-262. doi: 10.1080/02827581.2021.1917649 Open DOISearch in Google Scholar

91. Ulrich DEM, Sevanto S, Ryan M, Albright MBN, Johansen RB & Dunbar JM. Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought. Sci Rep 2019; 9: 249. doi: 10.1038/s41598-018-36971-3634297830670745 Open DOISearch in Google Scholar

92. de Almeida JR, Bonatelli ML, Durante Batista B, Teixeira-Silva NS, Mondin M, dos Santos RC, Simoes Bento, JM, Azevedo Jm, Quecine MC. Bacillus thuringiensis RZ2MS9, a tropical plant growth-promoting rhizobacterium, colonizes maize endophytically and alters the plant’s production of volatile organic compounds during co-inoculation with Azospirillum brasilense Ab-V5. Environ Microbiol Rep 2021: 13: 812–821 doi: 10.1111/1758-2229.1300434433236 Open DOISearch in Google Scholar

93. Bonatelli ML, Lacerda-Júnior GV, dos Reis Junior FB, Fernandes-Júnior PV, Soares Melo I & Quecine MC. Beneficial plant-associated microorganisms from semi-arid regions and seasonally dry environments: a review. Front Microbiol 2021; 11:553223.10.3389/fmicb.2020.553223784545333519722 Search in Google Scholar

94. Lemfack MC, Gohlke B-O, Toguem SMT, et al. mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res 2018; 46(D1):D1261-D1265.10.1093/nar/gkx1016575329729106611 Search in Google Scholar

95. Morsy MR, Oswald J, He J, Tang Y & Roossinck MJ. Teasing apart a three-way symbiosis: transcriptome analyses of Curvularia protuberata in response to viral infection and heat stress. Biochem Biophys Res Commun 2010; 401:225–230. doi: 10.1016/j.bbrc.2010.09.03420849822 Open DOISearch in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other