Open Access

Cell contractile force measured using a deformable hollow capsule


Cite

1. Harris A, Wild P, Stopak D. Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science, 1980; 208:177-17910.1126/science.69877366987736 Search in Google Scholar

2. Markhotina N, Liu GJ, Martin DK. Contractility of retinal pericytes grown on silicone elastomer substrates is through a protein kinase A-mediated intracellular pathway in response to vasoactive peptides. IET Nanobiotechnol, 2007; 1:44-5110.1049/iet-nbt:20060019 Search in Google Scholar

3. du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B. Force mapping in epithelial cell migration. Proc Natl Acad Sci USA, 2005; 102:2390-239510.1073/pnas.040848210254896615695588 Search in Google Scholar

4. Park J, Ryu J, Choi SK, Seo E, Cha JM, Ryu S, Kim J, Kim B-S, Lee SH. Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers. Anal Chem, 2005; 77:6571-658010.1021/ac050780016223242 Search in Google Scholar

5. Kelley C, D’Amore P, Hechtman H, Shepro D. 1987, Microvascular pericyte contractility in vitro: Comparison with other cells of the vascular wall. J Cell Biol, 1987; 104:483-49010.1083/jcb.104.3.48321145293818789 Search in Google Scholar

6. Elsdale T, Bard J. Collagen substrata for studies on cell behaviour. J Cell Biol, 1972; 54:626-63710.1083/jcb.54.3.62622002884339818 Search in Google Scholar

7. Buttafoco L, Boks N, Engubers-Buijtenhuijs P, Grijpma DW, Poot A, Dijkstra P, Vermes I, Feijen J. Porous hybrid structures based on P(Dlla-Co-Tmc) and collagen for tissue engineering of small diameter blood vessels. J Biomed Mater Res B, 2006; 79:425-43410.1002/jbm.b.3055716649175 Search in Google Scholar

8. He W, Ma Z, Yong T, Teo WE, Ramakrishna S. 2005, Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials, 2005; 36:7606-761510.1016/j.biomaterials.2005.05.04916000219 Search in Google Scholar

9. Yang J, Motlagh D, Webb AR, Ameer GA. Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering. Tissue Eng, 2005; 11:1876-188610.1089/ten.2005.11.187616411834 Search in Google Scholar

10. Amiel GE, Komura M, Shapira O, Yoo JJ, Yazdani S, Berry J, Kaushal S, Bischoff J, Atala A, Soker S. 2006, Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng, 2006; 12:235510.1089/ten.2006.12.235516968175 Search in Google Scholar

11. Takei T, Yamaguchi S, Sakai S, Ijima H, Kawakami K. Novel technique for fabricating double-layered tubular constructs consisting of two vascular cell types in collagen gels used as templates for three-dimensional tissues. J Biosci Bioeng, 2007; 104:435-43810.1263/jbb.104.435 Search in Google Scholar

12. Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997; 277:1232-123710.1126/science.277.5330.1232 Search in Google Scholar

13. Georgieva R, Moya S, Donath E, Baumler H. Permeability and conductivity of red blood cell templated polyelectrolyte capsules coated with supplementary layers. Langmuir, 2004; 20:1895-190010.1021/la035779f Search in Google Scholar

14. Vautier D, Karsten V, Egles C, Chluba J, Schaaf P, Voegel JC, Ogier J. Polyelectrolyte multilayer films modulate cytoskeletal organization in chondrosarcoma cells. J Biomater Sci Polym Ed, 2002; 13:712-73110.1163/156856202320269175 Search in Google Scholar

15. Boura C, Menu P, Payan E, Picart C, Voegel JC, Muller S, Stoltz JF. Endothelial cells grown on thin polyelectrolyte mutlilayered films: An evaluation of a new versatile surface modification. Biomaterials, 2003; 24:3521-353010.1016/S0142-9612(03)00214-X Search in Google Scholar

16. Ting JHY, Haas MR, Valenzuela SM, Martin DK. Terminating polyelectrolyte in multilayer films influences growth and morphology of adhering cells. IET Nanobiotechnol, 2007; 4:77-9010.1049/iet-nbt.2009.001620726674 Search in Google Scholar

17. Battle A, Valenzuela SM, Mechler A, Nichols RJ, Praporski S, di Maio, Isalm H, Girard-Egrot AP, Cornell BA, Prashar J, Caruso F, Martin LL, Martin DK. Novel engineered ion channels provides controllable ion permeability for polyeletrolyte microcapsules with a lipid membrane. Advanced Functional Materials, 2009; 19:201-20810.1002/adfm.200800483 Search in Google Scholar

18. Stidder B, Alcaraz JP, Liguoori L, Khalef N, Bakri A, Watkins EB, Cinquin P, Martin DK. Biomimetic membrane system composed of a composite interpenetrating hydrogel film and a lipid bilayer. Advanced Functional Materials, 2012; 22:4259-426710.1002/adfm.201200751 Search in Google Scholar

19. Petra Tryoen-Tóth DV, Haikel Y, Voegel JC, Schaaf P, Chluba J, Ogier J. Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films. J Biomed Mater Res, 2002; 60:657-66710.1002/jbm.1011011948525 Search in Google Scholar

20. Lin Y, Wang L, Zhang P, Wang X, Chen X, Jing X, Su Z. Surface modification of poly(L-Lactic Acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin. Acta Biomater, 2006; 2:155-16410.1016/j.actbio.2005.10.00216701873 Search in Google Scholar

21. Mermut O, Lefebvre J, Gray D, Barrett C. Structural and mechanical properties of polyelectrolyte multilayer films studied by AFM. Macromolecules, 2003; 36:8819-882410.1021/ma034967+ Search in Google Scholar

22. Heuvingh J, Zappa M, Fery A. Salt softening of polyelectrolyte multilayer capsules. Langmuir, 2005; 21:3165-317110.1021/la047388m Search in Google Scholar

23. Lulevich V, Andrienko D, Vinogradova O. Elasticity of polyelectrolyte multilayer microcapsules. J Chem Phys, 2004; 120:3822-382610.1063/1.1644104 Search in Google Scholar

24. Antipov AA, Sukhorukov G.B. Polyelectrolyte multilayer capsules as vehicles with tunable permeability, Advances in Colloid and Interface Science Plenary and Invited Lectures From the XVIth European Chemistry at Interfaces Conference, Vladimir, Russia, May 2003, vol. 111, no. 1-2, pp. 49-6110.1016/j.cis.2004.07.006 Search in Google Scholar

25. Antipov AA, Shchukin D, Fedutik Y, Petrov AI, Sukhorukov GB, Möhwald H. Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Coll Surf A, 2003; 224:175-18310.1016/S0927-7757(03)00195-X Search in Google Scholar

26. Lebedeva OV, Kim BS, Vasilev K, Vinogradova OI. Salt softening of polyelectrolyte multilayer microcapsules. J Coll Interf Sci, 2005; 284:455-46210.1016/j.jcis.2004.10.04015780282 Search in Google Scholar

27. Obara K, Nikcevic G, Pestic L, Nowak G, Lorimer DD, Guerriero V Jr, Elson EL, Paul RJ, Lanerolle PD. Fibroblast contractility without an increase in basal myosin light chain phosphorylation in wild type cells and cells expressing the catalytic domain of myosin light chain kinase. J Biol Chem, 1995; 270:18734-1873710.1074/jbc.270.32.187347642521 Search in Google Scholar

28. Wakatsuki T, Schwab B, Thompson NC, Elson EL. Effects of cytochalasin D and larunculin B on mechanical properties of cells. J Cell Sci, 2001; 114:1025-103610.1242/jcs.114.5.102511181185 Search in Google Scholar

29. Allenberg M, Weinstein T, Li I, Silverman M. Activation of procollagenase IV by cytochalasin D and concanavalin A in cultured rat mesangial cells: linkage to cytoskeletal reorganization. J Amer Soc Nephrol, 1994; 4:1760-177010.1681/ASN.V41017608068874 Search in Google Scholar

30. Gavara N, Sunyer R, Roca-Cusachs P, Farré R, Rotger M, Navajas D. Thrombin-induced contraction in alveolar epithelial cells probed by traction microscopy. J Appl Physiol, 2006; 101:512-52010.1152/japplphysiol.00185.200616675616 Search in Google Scholar

31. Insel PA, Ostrom RS. Forskolin as a tool for examining adenylyl cyclase expression, regulation and G-protein signaling. Cell Molec Neurobiol, 2003; 23:305-31410.1023/A:1023684503883 Search in Google Scholar

32. Valitutti S, Dessing M, Lanzavecchia A. Role of cAMP in regulating cytoxic T lymphocyte adhesion and motility. Eur J Immunol, 1993; 23:790-79510.1002/eji.1830230403 Search in Google Scholar

33. Smith-Thomas LC, Richardson PSR, Rennie IG, Palmer I, Boulton M, Sheridan C, MacNeil S. Influence of pigment content, intracellular calcium and cyclicAMP on the ability of retinal pigmen,t epithelial cells to contract collagen gels. Curr Eye Res, 2000; 21:518-52910.1076/0271-3683(200007)2111-ZFT518 Search in Google Scholar

34. Swaney JS, Patel HH, Yokoyama U, Head BP, Roth DM, Insel PA. Focal adhesions in (myo)fibroblasts scaffold adenylyl cyclase with phosphorylated caveolin. J Biol Chem, 2006; 281:17173-1717910.1074/jbc.M513097200 Search in Google Scholar

35. Freyman TM, Yannas IV, Yokoo R, Gibson LJ. Fibroblast contraction of a collagen-gag matrix. Biomaterials, 2001; 22:2883-289110.1016/S0142-9612(01)00034-5 Search in Google Scholar

36. Eastwood M, McGrouther DA, Brown RA. A culture force monitor for measurement of contraction forces generated in human dermal fibroblast cultures: evidence for cell-matrix mechanical signalling. Biochim Biophys Acta, 1994; 1201:186-19210.1016/0304-4165(94)90040-X Search in Google Scholar

37. Delvoye P, Wiliquet P, Leveque JL, Nusgens BV, Lapiere CM. Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. 1991; 97:898-902 Search in Google Scholar

38. Kasugai S, Suzuki S, Shibata S, Yasui S, Amano H, Ogura H. 1990, Measurements of the isometric contractile forces generated by dog periodontal ligament fibroblasts in vitro. Arch Oral Biol, 1990; 35:597-60110.1016/0003-9969(90)90025-6 Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other