1. bookVolume 6 (2022): Issue 2 (April 2022)
Journal Details
License
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English
access type Open Access

Polyhydroxyalkanoate (PHA) Biopolyesters - Emerging and Major Products of Industrial Biotechnology

Published Online: 30 Apr 2022
Volume & Issue: Volume 6 (2022) - Issue 2 (April 2022)
Page range: 49 - 60
Journal Details
License
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English
Abstract

Background: Industrial Biotechnology (“White Biotechnology”) is the large-scale production of materials and chemicals using renewable raw materials along with biocatalysts like enzymes derived from microorganisms or by using microorganisms themselves (“whole cell biocatalysis”). While the production of ethanol has existed for several millennia and can be considered a product of Industrial Biotechnology, the application of complex and engineered biocatalysts to produce industrial scale products with acceptable economics is only a few decades old. Bioethanol as fuel, lactic acid as food and PolyHydroxyAlkanoates (PHA) as a processible material are some examples of products derived from Industrial Biotechnology.

Purpose and Scope: Industrial Biotechnology is the sector of biotechnology that holds the most promise in reducing our dependence on fossil fuels and mitigating environmental degradation caused by pollution, since all products that are made today from fossil carbon feedstocks could be manufactured using Industrial Biotechnology – renewable carbon feedstocks and biocatalysts. To match the economics of fossil-based bulk products, Industrial Biotechnology-based processes must be sufficiently robust. This aspect continues to evolve with increased technological capabilities to engineer biocatalysts (including microorganisms) and the decreasing relative price difference between renewable and fossil carbon feedstocks. While there have been major successes in manufacturing products from Industrial Biotechnology, challenges exist, although its promise is real. Here, PHA biopolymers are a class of product that is fulfilling this promise.

Summary and Conclusion: The authors illustrate the benefits and challenges of Industrial Biotechnology, the circularity and sustainability of such processes, its role in reducing supply chain issues, and alleviating societal problems like poverty and hunger. With increasing awareness among the general public and policy makers of the dangers posed by climate change, pollution and persistent societal issues, Industrial Biotechnology holds the promise of solving these major problems and is poised for a transformative upswing in the manufacture of bulk chemicals and materials from renewable feedstocks and biocatalysts.

Keywords

1. Online resource: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/. Accessed March 29th, 2022 Search in Google Scholar

2. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017; 3(7): e1700782.10.1126/sciadv.1700782 Search in Google Scholar

3. Online resource: Ellen MacArthur Foundation, 2016: The new plastics economy rethinking the future of plastics. https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics#:~:text=The%20New%20Plastics%20Economy%3A%20Rethinking%20the%20future%20of%20plastics%20provides,achieving%20the%20systemic%20shift%20needed Search in Google Scholar

4. Gradus RH, Nillesen PH, Dijkgraaf E, Van Koppen RJ. A cost-effectiveness analysis for incineration or recycling of Dutch household plastic waste. Ecol Econ 2017; 135: 22-28.10.1016/j.ecolecon.2016.12.021 Search in Google Scholar

5. Online resource: https://www.ciel.org/project-update/plastic-climate-the-hidden-costs-of-a-plastic-planet/ Accessed March 17th, 2022 Search in Google Scholar

6. Sharma S, Chatterjee S. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Poll Res 2017; 24(27): 21530-21547.10.1007/s11356-017-9910-8 Search in Google Scholar

7. Kershaw P. Sources, fate and effects of microplastics in the marine environment: a global assessment. International Maritime Organization, 2015; ISSN 1020-4873 (GESAMP Reports & Studies Series); http://hdl.handle.net/123456789/735 Search in Google Scholar

8. Narodoslawsky M. Structural prospects and challenges for bio commodity processes. Food Technol Biotechnol 2010; 48(3): 270-275. Search in Google Scholar

9. Martin DK, Vicente O, Beccari T, Kellermayer M, Koller M, Lal R, Marks RS, Marova I, Mechler A, Tapaloaga D, Žnidaršič-Plazl P, Dundar M. A brief overview of global biotechnology. Biotechnol Biotechnol Equip 2021; 35(sup1): S5-S14.10.1080/13102818.2021.1878933 Search in Google Scholar

10. Leong HY, Chang CK, Khoo KS, Chew KW, Chia SR, Lim JW, Chang JS, Show PL. Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnol Biofuels 2021; 14: 8710.1186/s13068-021-01939-5 Search in Google Scholar

11. Krotscheck C, Narodoslawsky M. The Sustainable Process Index a new dimension in ecological evaluation.Ecol Eng 1996; 6(4): 241-258.10.1016/0925-8574(95)00060-7 Search in Google Scholar

12. Chahal SP, Starr JN. Lactic Acids. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim 2012, doi:10.1002/14356007.a15_097.pub210.1002/14356007.a15_097.pub2 Search in Google Scholar

13. Dürre P. Fermentative butanol production: bulk chemical and biofuel. Ann N Y Acad Sci 2008; 1125(1): 353-362.10.1196/annals.1419.00918378605 Search in Google Scholar

14. Bunch AW. How biotechnology helped maintain the supply of acetone for the manufacture of cordite during World War I. Int J Hist Eng 2014; 84(2): 211-226.10.1179/1758120614Z.00000000043 Search in Google Scholar

15. Dürre P. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 1998; 49(6): 639-648.10.1007/s002530051226 Search in Google Scholar

16. Lee SY, Park JH, Jan, SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by Clostridia. Biotechnol Bioeng 2008; 101(2): 209-228.10.1002/bit.22003 Search in Google Scholar

17. Saeki K, Ozaki K, Kobayashi T, Ito S. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J Biosci Bioeng 2007; 103(6): 501-508.10.1263/jbb.103.501 Search in Google Scholar

18. Chapman J, Ismail AE, Dinu CZ. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 2018; 8(6): 238.10.3390/catal8060238 Search in Google Scholar

19. Cherry JR, Fidantsef AL. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 2003; 14(4): 438-443.10.1016/S0958-1669(03)00099-5 Search in Google Scholar

20. Braunegg G, Lefebvre G, Genser KF. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 1998; 65(2-3): 127-161.10.1016/S0168-1656(98)00126-6 Search in Google Scholar

21. Tan D, Wang Y, Tong Y, Chen GQ. Grand challenges for industrializing polyhydroxyalkanoates (PHAs). Trends Biotechnol 2021; 39(9): 953-963.10.1016/j.tibtech.2020.11.01033431229 Search in Google Scholar

22. Koller M, Mukherjee A. A new wave of industrialization of PHA biopolyesters. Bioengineering 2022; 9(2): 74.10.3390/bioengineering9020074886973635200427 Search in Google Scholar

23. Tinôco D, Borschiver S, Coutinho PL, Freire DM. Technological development of the bio-based 2,3-butanediol process. Biofuel Bioprod Biorefin 2021; 15: 357–376.10.1002/bbb.2173 Search in Google Scholar

24. Savakis PE, Angermayr SA, Hellingwerf KJ. Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria. Metabol Eng 2013; 20: 121–130.10.1016/j.ymben.2013.09.00824104064 Search in Google Scholar

25. Online resource: LanzaTech. World’s first commercial waste gas to ethanol plant starts up http://www.lanzatech.com/worlds-first-commercial-wastegas-ethanol-plant-starts/, 2018 (accessed April 15, 2021). Search in Google Scholar

26. Anandharaj SJ, Gunasekaran J, Udayakumar GP, Meganathan Y, Sivarajasekar N. Biobutanol: insight, production and challenges. In: Sivasubramanian V., Pugazhendhi A., Moorthy I. (eds.). Sustainable Development in Energy and Environment. Springer Proceedings in Energy. Springer, Singapore. 2020; pp. 25-37.10.1007/978-981-15-4638-9_3 Search in Google Scholar

27. Uyttebroek M, Van Hecke W, Vanbroekhoven K. Sustainability metrics of 1-butanol. Catal Today 2015; 239: 7-10.10.1016/j.cattod.2013.10.094 Search in Google Scholar

28. Zhen X, Wang Y, Liu D. Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines. Renew Energy 2020; 147: 2494-2521.10.1016/j.renene.2019.10.119 Search in Google Scholar

29. Jin Y, Zhang L, Yi Z, Fang Y, Zhao H. Waste-to-energy: biobutanol production from cellulosic residue of sweet potato by Clostridia acetobutylicum. Environ Eng Res 2022; 27(5): 163-172.10.4491/eer.2021.372 Search in Google Scholar

30. Okolie JA, Mukherjee A, Nanda S, Dalai A., Kozinski JA. Next-generation biofuels and platform biochemicals from lignocellulosic biomass. Int J Energy Res 2021; 45(10): 14145-14169.10.1002/er.6697 Search in Google Scholar

31. Online resource (March 17th, 2022): https://www.wissenschaft.de/erde-umwelt/wie-viel-oel-steckt-in-plastiktueten/#:~:text=Eine%20durchschnittliche%20Einkaufst%C3%BCte%20wiegt%20etwa,oder%20ein%20Zwanzigstel%20Liter%20Erd%C3%B6l. Search in Google Scholar

32. Straathof AJ, Wahl SA, Benjamin KR, Takors R, Wierckx N, Noorman HJ. Grand research challenges for sustainable industrial biotechnology. Trends Biotechnol 2019; 37(10): 1042-1050.10.1016/j.tibtech.2019.04.00231054854 Search in Google Scholar

33. Handa V, Sharma D, Kaur A, Arya SK. Biotechnological applications of microbial phytase and phytic acid in food and feed industries. Biocatal Agric Biotechnol 2020; 25: 101600.10.1016/j.bcab.2020.101600 Search in Google Scholar

34. Guerrand D. Economics of food and feed enzymes: Status and prospectives. In: Enzymes in human and animal nutrition, 2018. pp. 487-514. Academic Press. Search in Google Scholar

35. One resource: http://www.bio-on.it/minerv-biorecovery.php Accessed September 3rd, 2021 Search in Google Scholar

36. Santorio S, Fra-Vázquez A, Del Rio AV, Mosquera-Corral A. Potential of endogenous PHA as electron donor for denitrification. Sci Total Environ2019; 695: 133747.10.1016/j.scitotenv.2019.13374731419685 Search in Google Scholar

37. Online Resource: new denitrification carbon source – cases of advanced controlled-release carbon source for denitrogenation. Ningbo TiananBiologic Material Co., ltd. Internet site? Search in Google Scholar

38. Zakeri B, Wright GD. Chemical biology of tetracycline antibiotics. Biochem Cell Biol 2008; 86(2): 124-136.10.1139/O08-00218443626 Search in Google Scholar

39. Pasutto FM. Mirror images: the analysis of pharmaceutical enantiomers. J Clin Pharmacol 1992; 32(10): 917-924.10.1002/j.1552-4604.1992.tb04639.x1447399 Search in Google Scholar

40. Barrett AM, Cullum VA. The biological properties of the optical isomers of propranolol and their effects on cardiac arrhythmias. Br J Pharmacol 1968; 34(1): 43-55.10.1111/j.1476-5381.1968.tb07949.x170345019108278 Search in Google Scholar

41. Singh BK, Kumar V, Shukla IC. Assay of some antimalarial drugs in pure form and in their pharmaceutical preparations with pyridinium fluorochromate reagent. Asian J Chem 2013; 25(14): 7831.10.14233/ajchem.2013.14635 Search in Google Scholar

42. Pohanka M. D-lactic acid as a metabolite: toxicology, diagnosis, and detection. BioMed Res Int 2020; 2020: Article ID 341903410.1155/2020/3419034732027632685468 Search in Google Scholar

43. Murthy PS, Vedashree M, Sneha HP, Prakash I. Extremophiles as a source of biotechnological products. In: Physiology, Genomics, and Biotechnological Applications of Extremophiles, 2020: pp. 308-333. IGI Global.10.4018/978-1-7998-9144-4.ch015 Search in Google Scholar

44. Rotter A, Barbier M, Bertoni F, Bones AM, Cancela ML, Carlsson J, et al. (2021). The essentials of marine biotechnology. Front Mar Sci 2021; 8: 158. Search in Google Scholar

45. Koller M, Sandholzer D, Salerno A, Braunegg G, Narodoslawsky M. Biopolymer from industrial residues: Life cycle assessment of poly (hydroxyalkanoates) from whey. Resour Conserv Recyc 2013; 73: 64-71.10.1016/j.resconrec.2013.01.017 Search in Google Scholar

46. Online resource: http://en.bluepha.com/ Accessed March 7th, 2022 Search in Google Scholar

47. Chen GQ, Jiang XR. Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol 2018; 50: 94-100.10.1016/j.copbio.2017.11.01629223022 Search in Google Scholar

48. Kucera D, Pernicová I, Kovalcik, A, Koller M, Mullerova L, Sedlacek P, Mravec P, Nebesarova J, Kalina M, Marova I, Krzyzanek V, Obruca S. Characterization of the promising poly (3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresource Technol 2018; 256: 552-556.10.1016/j.biortech.2018.02.06229478784 Search in Google Scholar

49. Kourilova X, Novackova I, Koller M, Obruca S. Evaluation of mesophilic Burkholderia sacchari, thermophilic Schlegelella thermodepolymerans and halophilic Halomonas halophila for polyhydroxyalkanoates production on model media mimicking lignocellulose hydrolysates. Bioresource Technol 2021; 325: 124704.10.1016/j.biortech.2021.12470433493750 Search in Google Scholar

50. Online resource: https://www.europabio.org/members/ Accessed March 1st, 2022 Search in Google Scholar

51. Online resource: https://www.europabio.org/ Accessed March 1st, 2022 Search in Google Scholar

52. Online resource: https://www.igb.fraunhofer.de/en/research/industrial-biotechnology.html Accessed March 31st, 2022 Search in Google Scholar

53. Gillespie I, Wells RC, Bartsev A, Philp JC. OECD outlook on prospects in industrial biotechnology. Ind Biotechnol 2011; 7(4): 267-268.10.1089/ind.2011.7.267 Search in Google Scholar

54. Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C, Meixner K, Sedrlova Z, Koller, M. Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol 2020; 104(11): 4795-4810.10.1007/s00253-020-10568-132303817 Search in Google Scholar

55. Obruca S, Sedlacek P, Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. Bioresource Technol 2021; 326: 124767.10.1016/j.biortech.2021.12476733540213 Search in Google Scholar

56. Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 2017; 37: 24-38.10.1016/j.nbt.2016.05.00127184617 Search in Google Scholar

57. DIRECTIVE (EU) 2019/904 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 June 2019 on the reduction of the impact of certain plastic products on the environment Search in Google Scholar

58. A European Strategy for Plastics in a Circular Economy (https://perma.cc/EV74-NWMH) Search in Google Scholar

59. Koller M, Mukherjee A. Polyhydroxyalkanoates–linking properties, applications, and end-of-life options. Chem Biochem Eng Q 2020; 34(3): 115-129.10.15255/CABEQ.2020.1819 Search in Google Scholar

60. Koller M. Switching from fossil plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament? Eurobiotech J 2019; 3(1): 32-44. Search in Google Scholar

61. Henton DE, Gruber P, Lunt J, Randall J. Polylactic acid technology. Nat Fibers Biopoly Biocomp 2005; 16, 527-577.10.1201/9780203508206.ch16 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo