Cite

Ansari, M.A., et al., Current Nanoparticle Approaches in Nose to Brain Drug Delivery and Anticancer Therapy - A Review. Current Pharmaceutical Design, 2020. 26(1): p. 1128-1137.Ansari M.A. et al Current Nanoparticle Approaches in Nose to Brain Drug Delivery and Anticancer Therapy - A Review Current Pharmaceutical Design 2020 26 1 1128113710.2174/1381612826666200116153912Search in Google Scholar

Cunha, L., et al., the role of molecular imaging in modern drug development. Drug Discovery Today, 2014. 19(7): p. 936-948.Cunha L. et al The role of molecular imaging in modern drug development Drug Discovery Today 2014 19 7 93694810.1016/j.drudis.2014.01.003Search in Google Scholar

Khurana A, A.P., Khurana I, Allwadhi S, Weiskirchen R, Banothu AK, Chhabra D, Joshi K, Bharani KK, Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today, 2021.Khurana A A.P Khurana I Allwadhi S Weiskirchen R Banothu AK Chhabra D Joshi K Bharani KK Role of nanotechnology behind the success of mRNA vaccines for COVID-19 Nano Today 202110.1016/j.nantod.2021.101142Search in Google Scholar

Pascolo, S., Synthetic Messenger RNA-Based Vaccines: From Scorn to Hype. Viruses-Basel, 2021. 13(2).Pascolo S. Synthetic Messenger RNA-Based Vaccines: From Scorn to Hype Viruses-Basel 2021 13 210.3390/v13020270Search in Google Scholar

Yetisgin, A.A., et al., Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules, 2020. 25(9).Yetisgin A.A. et al Therapeutic Nanoparticles and Their Targeted Delivery Applications Molecules 2020 25 910.3390/molecules25092193Search in Google Scholar

Palmai, M., et al., Direct immobilization of manganese chelates on silica nanospheres for MRI applications. Journal of Colloid and Interface Science, 2017. 498: p. 298-305.Palmai M. et al Direct immobilization of manganese chelates on silica nanospheres for MRI applications Journal of Colloid and Interface Science 2017 498 29830510.1016/j.jcis.2017.03.053Search in Google Scholar

Varga, Z., et al., Radiolabeling of Extracellular Vesicles with Tc-99m for Quantitative In Vivo Imaging Studies. Cancer Biotherapy and Radiopharmaceuticals, 2016. 31(5): p. 168-173.Varga Z. et al Radiolabeling of Extracellular Vesicles with Tc-99m for Quantitative In Vivo Imaging Studies Cancer Biotherapy and Radiopharmaceuticals 2016 31 5 16817310.1089/cbr.2016.2009Search in Google Scholar

Chung, Y.H., H. Cai, and N.F. Steinmetz, Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Advanced Drug Delivery Reviews, 2020. 156: p. 214-235.Chung Y.H. Cai H. Steinmetz N.F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications Advanced Drug Delivery Reviews 2020 156 21423510.1016/j.addr.2020.06.024Search in Google Scholar

Ghitman, J., et al., Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Materials & Design, 2020. 193.Ghitman J. et al Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine Materials & Design 2020 19310.1016/j.matdes.2020.108805Search in Google Scholar

Vijayan, V.M., P.N. Vasudevan, and V. Thomas, Polymeric Nanogels for Theranostic Applications: A Mini-Review. Current Nanoscience, 2020. 16(3): p. 392-398.Vijayan V.M. Vasudevan P.N. Thomas V. Polymeric Nanogels for Theranostic Applications: A Mini-Review Current Nanoscience 2020 16 3 39239810.2174/1573413715666190717145040Search in Google Scholar

Indoria, S., V. Singh, and M.F. Hsieh, Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. International Journal of Pharmaceutics, 2020. 582.Indoria S. Singh V. Hsieh M.F. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. International Journal of Pharmaceutics 2020 58210.1016/j.ijpharm.2020.119314Search in Google Scholar

Forgach, L., et al., Fluorescent, Prussian Blue-Based Biocompatible Nanoparticle System for Multimodal Imaging Contrast. Nanomaterials, 2020. 10(9).Forgach L. et al Fluorescent, Prussian Blue-Based Biocompatible Nanoparticle System for Multimodal Imaging Contrast Nanomaterials 2020 10 910.3390/nano10091732Search in Google Scholar

Kiss, B., et al., Topography, Spike Dynamics, and Nanomechanics of Individual Native SARS-CoV-2 Virions. Nano Letters, 2021. 21(6): p. 2675-2680.Kiss B. et al Topography, Spike Dynamics, and Nanomechanics of Individual Native SARS-CoV-2 Virions Nano Letters 2021 21 6 2675268010.1021/acs.nanolett.0c04465Search in Google Scholar

Stephen, Z.R., F.M. Kievit, and M.Q. Zhang, Magnetite nanoparticles for medical MR imaging. Materials Today, 2011. 14(7-8): p. 330-338.Stephen Z.R. Kievit F.M. Zhang M.Q. Magnetite nanoparticles for medical MR imaging Materials Today 2011 14 7-8 33033810.1016/S1369-7021(11)70163-8Search in Google Scholar

Szigeti, K., et al., Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent. Contrast Media & Molecular Imaging, 2018.Szigeti K. et al Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent Contrast Media & Molecular Imaging 201810.1155/2018/2023604Search in Google Scholar

Baalousha, M. and J.R. Lead, Characterization of natural and manufactured nanoparticles by atomic force microscopy: Effect of analysis mode, environment and sample preparation. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2013. 419: p. 238-247.Baalousha M. Lead J.R. Characterization of natural and manufactured nanoparticles by atomic force microscopy: Effect of analysis mode, environment and sample preparation Colloids and Surfaces a-Physicochemical and Engineering Aspects 2013 419 23824710.1016/j.colsurfa.2012.12.004Search in Google Scholar

Sitterberg, J., et al., Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2010. 74(1): p. 2-13.FSitterberg J. et al Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems European Journal of Pharmaceutics and Biopharmaceutics 2010 74 1 21310.1016/j.ejpb.2009.09.005Search in Google Scholar

Sharma, P., et al., Multimodal Nanoparticulate Bioimaging Contrast Agents. Cancer Nanotechnology: Methods and Protocols, 2010. 624: p. 67-81.Sharma P. et al Multimodal Nanoparticulate Bioimaging Contrast Agents Cancer Nanotechnology: Methods and Protocols 2010 624 678110.1007/978-1-60761-609-2_5Search in Google Scholar

M. Verdaguer, G.S.G., Magnetic Prussian Blue Analogs, in Magnetism: Molecules to Materials, M.D. J. S. Miller, Editor. 2004, M. Wiley-VCH Verlag GmbH & Co. KGaA. p. 283-346.Verdaguer M. G.S.G., Magnetic Prussian Blue Analogs, in Magnetism: Molecules to Materials, M.D. J. S. Miller, Editor 2004 M. Wiley-VCH Verlag GmbH & Co. KGaA 28334610.1002/9783527620548.ch9dSearch in Google Scholar

Shokouhimehr, M., et al., Biocompatible Prussian blue nanoparticles: Preparation, stability, cytotoxicity, and potential use as an MRI contrast agent. Inorganic Chemistry Communications, 2010. 13(1): p. 58-61.Shokouhimehr M. et al Biocompatible Prussian blue nanoparticles: Preparation, stability, cytotoxicity, and potential use as an MRI contrast agent Inorganic Chemistry Communications 2010 13 1 586110.1016/j.inoche.2009.10.015Search in Google Scholar

Gao, X.R., et al., the Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. Sensors, 2020. 20(23).Gao X.R. et al The Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment Sensors 2020 20 2310.3390/s20236905Search in Google Scholar

Powers, K.W., et al., Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences, 2006. 90(2): p. 296-303.Powers K.W. et al Research strategies for safety evaluation of nanomaterials Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences 2006 90 2 29630310.1093/toxsci/kfj099Search in Google Scholar

Zhang, Y.N., et al., Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. Journal of Controlled Release, 2016. 240: p. 332-348.Zhang Y.N. et al Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination Journal of Controlled Release 2016 240 33234810.1016/j.jconrel.2016.01.020Search in Google Scholar

Tremoleda, J.L., et al., Imaging technologies for preclinical models of bone and joint disorders. Ejnmmi Research, 2011. 1.Tremoleda J.L. et al Imaging technologies for preclinical models of bone and joint disorders Ejnmmi Research 2011 110.1186/2191-219X-1-11Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other