Open Access

Recent Advances in 3D Printing of Polyhydroxyalkanoates: A Review


Cite

Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules. 2018;23(2):362/1-/20.KollerMBiodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applicationsMolecules2018232362/1-/2010.3390/molecules23020362601758729419813Search in Google Scholar

Yu PH, Chua H, Huang A-L, Ho K-P. Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Appl Biochem Biotech 1999; 78:445-54.YuPHChuaHHuangA-LHoK-PConversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoatesAppl Biochem Biotech1999784455410.1007/978-1-4612-1604-9_41Search in Google Scholar

Obruca S, Marova I, Snajdar O, Mravcova L, Svoboda Z. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol Lett 2010; 32(12):1925-32.ObrucaSMarovaISnajdarOMravcovaLSvobodaZProduction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerateBiotechnol Lett2010321219253210.1007/s10529-010-0376-820814716Search in Google Scholar

Obruca S, Benesova P, Petrik S, Oborna J, Prikryl R, Marova I. Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochem 2014; 49(9):1409-14.ObrucaSBenesovaPPetrikSObornaJPrikrylRMarovaIProduction of polyhydroxyalkanoates using hydrolysate of spent coffee groundsProcess Biochem201449914091410.1016/j.procbio.2014.05.013Search in Google Scholar

Kovalcik A, Perncivoa I, Obruca S, Szotkowski M, Enev V, Kalina M, Marova I. Grape winery waste as a promising feedstock for the production of polyhydroxyalkanoates and other value-added products. Food Bioprod Processs 2020; 124: 1-10.KovalcikAPerncivoaIObrucaSSzotkowskiMEnevVKalinaMMarovaIGrape winery waste as a promising feedstock for the production of polyhydroxyalkanoates and other value-added productsFood Bioprod Processs202012411010.1016/j.fbp.2020.08.003Search in Google Scholar

Novackova I, Kucera D, Porizka J, Pernicova I, Sedlacek P, Koller M, Kovalcik A, Obuca S. Adaptation of Cupriavidus necator to levulinic acid for enhanced production of P (3HB-co-3HV) copolyesters. Biochem Eng J 2019; 151:107350.NovackovaIKuceraDPorizkaJPernicovaISedlacekPKollerMKovalcikAObucaSAdaptation of Cupriavidus necator to levulinic acid for enhanced production of P (3HB-co-3HV) copolyestersBiochem Eng J201915110735010.1016/j.bej.2019.107350Search in Google Scholar

Kovalcik A, Obruca S, Kalina M, Machovsky M, Enev V, Jakesova M, Sobkova M, Marova I. Enzymatic Hydrolysis of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) Scaffolds. Materials. 2020; 13(13):2992.KovalcikAObrucaSKalinaMMachovskyMEnevVJakesovaMSobkovaMMarovaIEnzymatic Hydrolysis of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) ScaffoldsMaterials20201313299210.3390/ma13132992737246632635613Search in Google Scholar

Braunegg G, Bona R, Schellauf F, Wallner E. Polyhydroxyalkanoates (PHAs) sustainable biopolyester production. Polimery-W 2002; 47(7/8):479-84.BrauneggGBonaRSchellaufFWallnerEPolyhydroxyalkanoates (PHAs) sustainable biopolyester productionPolimery-W2002477/84798410.14314/polimery.2002.479Search in Google Scholar

Kumar P, Patel SKS, Lee J-K, Kalia VC. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 2013; 31(8):1543-61.KumarPPatelSKSLeeJ-KKaliaVCExtending the limits of Bacillus for novel biotechnological applicationsBiotechnol Adv201331815436110.1016/j.biotechadv.2013.08.00723954286Search in Google Scholar

https://www.materialdatacenter.com/ms/en/Biomer/Biomer/Biomer%C2%AE+P226/63ccd45d/2711.Datasheet of Biomer® P226 - PHB - Biomer. download 14.11.20.https://www.materialdatacenter.com/ms/en/Biomer/Biomer/Biomer%C2%AE+P226/63ccd45d/2711.Datasheetof Biomer® P226 - PHB - Biomer. download 14.11.20Search in Google Scholar

http://www.tianan-enmat.com/# Technical Data Sheet & Processing Guide. download 14.11.20.http://www.tianan-enmat.com/#Technical Data Sheet & Processing Guide. download 14.11.20Search in Google Scholar

https://kanekabiopolymers.com/ Kaneka Biodegradable Polymer Brochure. download 14.11.20.https://kanekabiopolymers.com/Kaneka Biodegradable Polymer Brochure. download 14.11.20Search in Google Scholar

http://www.tjgreenbio.com/en/Product.aspx?cid=58&title=Performance%20Index Performance Index of Sogreen. download 14.11.20.http://www.tjgreenbio.com/en/Product.aspx?cid=58&title=Performance%20IndexPerformance Index of Sogreen. download 14.11.20Search in Google Scholar

Chen G-Q, Chen X-Y, Wu F-Q, Chen J-C. Polyhydroxyalkanoates (PHA) toward cost competitiveness and functionality. Advanced Industrial and Engineering Polymer Research. 2020; 3(1):1-7.ChenG-QChenX-YWuF-QChenJ-CPolyhydroxyalkanoates (PHA) toward cost competitiveness and functionalityAdvanced Industrial and Engineering Polymer Research2020311710.1016/j.aiepr.2019.11.001Search in Google Scholar

Singh M, Kumar P, Ray S, Kalia VC. Challenges and Opportunities for Customizing Polyhydroxyalkanoates. Indian J Microbiol 2015; 55(3):235-49.SinghMKumarPRaySKaliaVCChallenges and Opportunities for Customizing PolyhydroxyalkanoatesIndian J Microbiol20155532354910.1007/s12088-015-0528-6445650326063933Search in Google Scholar

https://helianpolymers.com/enmat-y1000p-phbv-polymer-for-injection-molding-thermoforming.html ENMAT Y1000P PHBV polymer for injection molding / thermoforming. download 14.11.20.https://helianpolymers.com/enmat-y1000p-phbv-polymer-for-injection-molding-thermoforming.htmlENMAT Y1000P PHBV polymer for injection molding / thermoforming. download 14.11.20Search in Google Scholar

Vostrejs P, Adamcová D, Vaverková MD, Enev V, Kalina M, Machovsky M, Šourková M, Marova I, Kovalcik A. Active biodegradable packaging films modified with grape seeds lignin. RSC Adv 2020; 10(49):29202-13.VostrejsPAdamcováDVaverkováMDEnevVKalinaMMachovskyMŠourkováMMarovaIKovalcikAActive biodegradable packaging films modified with grape seeds ligninRSC Adv20201049292021310.1039/D0RA04074FSearch in Google Scholar

Garside M. Global PHA market value 2019 & 2024. https:// https://www.statista.com/statistics/1010383/global-polyhydroxyalkanoate-market-size/2020GarsideMGlobal PHA market value 2019 & 2024https://www.statista.com/statistics/1010383/global-polyhydroxyalkanoate-market-size/2020Search in Google Scholar

Singh AK, Srivastava JK, Chandel AK, Sharma L, Mallick N, Singh SP. Biomedical applications of microbially engineered polyhydroxyalkanoates: an insight into recent advances, bottlenecks, and solutions. Appl Microbiol Biot 2019; 103(5):2007-32.SinghAKSrivastavaJKChandelAKSharmaLMallickNSinghSPBiomedical applications of microbially engineered polyhydroxyalkanoates: an insight into recent advances, bottlenecks, and solutionsAppl Microbiol Biot2019103520073210.1007/s00253-018-09604-y30645689Search in Google Scholar

https://www.tepha.com/products/overview/ Tepha Medical Devices. download 14.11.2020.https://www.tepha.com/products/overview/Tepha Medical Devices. download 14.11.2020Search in Google Scholar

https://www.zeropack.it/ Zeropack. download 14.11.20.https://www.zeropack.it/Zeropack. download 14.11.20Search in Google Scholar

Poltronieri P, Kumar P. Polyhydroxyalcanoates (PHAs) in Industrial Applications. In: Martínez L, Kharissova O, Kharisov B. (eds) Handbook of Ecomaterials. Cham. ;2017, p. 1-30; https://doi.org/10.1007/978-3-319-48281-1_70-1PoltronieriPKumarPPolyhydroxyalcanoates (PHAs) in Industrial ApplicationsMartínezLKharissovaOKharisovBHandbook of Ecomaterials. Cham2017130https://doi.org/10.1007/978-3-319-48281-1_70-110.1007/978-3-319-48281-1_70-1Search in Google Scholar

https://marketersmedia.com/how-is-rising-adoption-oforganic-mulch-driving-biodegradable-mulch-film-market/88935449 How is Rising Adoption of Organic Mulch Driving Biodegradable Mulch Film Market? Marketers-Media. download 22.11.2019.https://marketersmedia.com/how-is-rising-adoption-oforganic-mulch-driving-biodegradable-mulch-film-market/88935449How is Rising Adoption of Organic Mulch Driving Biodegradable Mulch Film Market? Marketers-Mediadownload 22.11.2019Search in Google Scholar

Amelia TS, Tamothran, AM, Vigneswari, S, Bhubalan K. Applications of PHA in Agriculture. In: Kalia VC, editor. Biotechnological Applications of Polyhydroxyalkanoates: Springer; 2019. p. 347-61.AmeliaTSTamothranAMVigneswariSBhubalanKApplications of PHA in Agriculture. In: Kalia VC, editor. Biotechnological Applications of PolyhydroxyalkanoatesSpringer20193476110.1007/978-981-13-3759-8_13Search in Google Scholar

Barrett A. NAFIGATE, the new generation of Cosmetics products based on the Hydal P3HB. BioplasticsNews. https://bioplasticsnews.com/2018/10/15https://bioplasticsnews.com/2018/10/15; 2018.BarrettANAFIGATE, the new generation of Cosmetics products based on the Hydal P3HBBioplasticsNewshttps://bioplasticsnews.com/2018/10/15https://bioplasticsnews.com/2018/10/15;2018Search in Google Scholar

https://materialdistrict.com/article/biodegradable-polyester-wastewater/ Biodegradable polyester clothing made with wastewater. download 25.10.2017.https://materialdistrict.com/article/biodegradable-polyester-wastewater/Biodegradable polyester clothing made with wastewater. download 25.10.2017Search in Google Scholar

Shishkovsky, I. New Trends in 3D Printing, IntechOpen, Rijeka Croatia; 2016.ShishkovskyINew Trends in 3D Printing, IntechOpen, Rijeka Croatia;201610.5772/61398Search in Google Scholar

Bártolo PJ. Stereolithographic Processes. In: Bártolo PJ, editor. Stereolithography: Materials, Processes and Applications. New York, USA: Springer. p. 1-37.BártoloPJStereolithographic Processes. In: Bártolo PJ, editor. Stereolithography: Materials, Processes and ApplicationsNew York, USASpringer13710.1007/978-0-387-92904-0_1Search in Google Scholar

Foli G, Degli Esposti M, Morselli D, Fabbri P. Two-Step Solvent-Free Synthesis of Poly(hydroxybutyrate)-Based Photocurable Resin with Potential Application in Stereolithography. Macromol Rapid Comm 2020;41(11):1900660.FoliGDegliEsposti MMorselliDFabbriP.Two-Step Solvent-Free Synthesis of Poly(hydroxybutyrate)-Based Photocurable Resin with Potential Application in StereolithographyMacromol Rapid Comm20204111190066010.1002/marc.20190066032363755Search in Google Scholar

Bonartsev AP, Bonartseva GA, Reshetov IV, Kirpichnikov MP, Shaitan KV. Application of Polyhydroxyalkanoates in Medicine and the Biological Activity of Natural Poly(3-Hydroxybutyrate). Acta Naturae 2019; 11(2):4-16.BonartsevAPBonartsevaGAReshetovIVKirpichnikovMPShaitanKVApplication of Polyhydroxyalkanoates in Medicine and the Biological Activity of Natural Poly(3-Hydroxybutyrate)Acta Naturae201911241610.32607/20758251-2019-11-2-4-16664335131413875Search in Google Scholar

Deckard CR. Apparatus for producing parts by selective sintering, US005597589A 1997.DeckardCRApparatus for producing parts by selective sintering, US005597589A1997Search in Google Scholar

Gibson I, Shi D. Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyping J 1997; 3(4):129–36.GibsonIShiDMaterial properties and fabrication parameters in selective laser sintering processRapid Prototyping J1997341293610.1108/13552549710191836Search in Google Scholar

Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003; 24(13):236378.LeongKFCheahCMChuaCKSolid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organsBiomaterials2003241323637810.1016/S0142-9612(03)00030-9Search in Google Scholar

Duan B, Wang M. Design, selective laser sintering, properties and in vitro biological evaluation of osteoconductive nanocomposite scaffolds for bone tissue engineering. Annual Meeting & Exposition of the Society for Biomaterials. 2010;32(Annual Meeting of the Society for Biomaterials: Giving Life to a World of Materials, 2010, Volume 1):118.DuanBWangMDesign, selective laser sintering, properties and in vitro biological evaluation of osteoconductive nanocomposite scaffolds for bone tissue engineeringAnnual Meeting & Exposition of the Society for Biomaterials201032Annual Meeting of the Society for Biomaterials: Giving Life to a World of Materials, 2010, Volume 1118Search in Google Scholar

Duan B, Wang M. Encapsulation and release of biomolecules from Ca-P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering. Polym Degrad Stabil 2010; 95(9):1655-64.DuanBWangMEncapsulation and release of biomolecules from Ca-P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sinteringPolym Degrad Stabil201095916556410.1016/j.polymdegradstab.2010.05.022Search in Google Scholar

Saska S, Pires LC, Cominotte MA, Merides LS, de Oliveira MF, Alves Maria I, Lopes da Silva V, Ribeiro SJL, Cirelli JA. Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering. Mat Sci Eng C 2018; 89:265-73.SaskaSPiresLCCominotteMAMeridesLSdeOliveira MFAlvesMaria ILopesda Silva VRibeiroSJLCirelliJA.Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineeringMat Sci Eng C2018892657310.1016/j.msec.2018.04.016Search in Google Scholar

Diermann SH, Lu M, Zhao Y, Vandi L-J, Dargusch M, Huang H. Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering. J Mech Behav Biomed 2018; 84:151-60.DiermannSHLuMZhaoYVandiL-JDarguschMHuangHSynthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sinteringJ Mech Behav Biomed2018841516010.1016/j.jmbbm.2018.05.007Search in Google Scholar

Pereira TF, Oliveira MF, Maia IA, Silva JVL, Costa MF, Thiré RMSM. 3D Printing of Poly(3-hydroxybutyrate) Porous Structures Using Selective Laser Sintering. Macromol Symp 2012; 319(1):64-73.PereiraTFOliveiraMFMaiaIASilvaJVLCostaMFThiréRMSM.3D Printing of Poly(3-hydroxybutyrate) Porous Structures Using Selective Laser SinteringMacromol Symp20123191647310.1002/masy.201100237Search in Google Scholar

Mwema F.M., E.T. A. Basics of Fused Deposition Modelling (FDM). In: Mwema F.M., E.T. A, editors. Fused Deposition Modeling Strategies for Quality Enhancement: Springer, Cham. p. 1-15.MwemaF.M.E.T. A. Basics of Fused Deposition Modelling (FDM)MwemaF.M.E.T. A, editorsFused Deposition Modeling Strategies for Quality EnhancementSpringerCham. p11510.1007/978-3-030-48259-6_1Search in Google Scholar

https://colorfabb.com/filaments download 14.11.2020https://colorfabb.com/filamentsdownload 14.11.2020Search in Google Scholar

Kovalcik A, Meixner K, Mihalic M, Zeilinger W, Fritz I, Fuchs W, Kucharczyk P, Stelzer F, Drosg B. Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatant. Int J Biol Macromol 2017; 102:497-504.KovalcikAMeixnerKMihalicMZeilingerWFritzIFuchsWKucharczykPStelzerFDrosgBCharacterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatantInt J Biol Macromol201710249750410.1016/j.ijbiomac.2017.04.054Search in Google Scholar

Kovalcik A, Sangroniz L, Kalina M, Skopalova K, Humpolíček P, Omastova M, Mundigler N, Müller AJ. Properties of scaffolds prepared by fused deposition modeling of poly(hydroxyalkanoates). Int J Biol Macromol 2020; 161:364-376.KovalcikASangronizLKalinaMSkopalovaKHumpolíčekPOmastovaMMundiglerNMüllerAJ.Properties of scaffolds prepared by fused deposition modeling of poly(hydroxyalkanoates)Int J Biol Macromol202016136437610.1016/j.ijbiomac.2020.06.022Search in Google Scholar

Carrasco F, Dionisi D, Martinelli A, Majone M. Thermal stability of polyhydroxyalkanoates. J Appl Polym Sci 2006; 100(3):2111-21.CarrascoFDionisiDMartinelliAMajoneMThermal stability of polyhydroxyalkanoatesJ Appl Polym Sci2006100321112110.1002/app.23586Search in Google Scholar

Savenkova L, Gercberga Z, Bibers I, Kalnin M. Effect of 3-hydroxy valerate content on some physical and mechanical properties of polyhydroxyalkanoates produced by Azotobacter chroococcum. Process Biochem 2000; 36(5):445-50.SavenkovaLGercbergaZBibersIKalninMEffect of 3-hydroxy valerate content on some physical and mechanical properties of polyhydroxyalkanoates produced by Azotobacter chroococcumProcess Biochem20003654455010.1016/S0032-9592(00)00235-1Search in Google Scholar

Magnani C, Idström A, Nordstierna L, Müller AJ, Dubois P, Raquez J-M, Re GL. Interphase Design of Cellulose Nanocrystals/Poly(hydroxybutyrate-ran-valerate) Bionanocomposites for Mechanical and Thermal Properties Tuning. Biomacromolecules. 2020; 21(5):1892-901.MagnaniCIdströmANordstiernaLMüllerAJDuboisPRaquezJ-MReGLInterphase Design of Cellulose Nanocrystals/Poly(hydroxybutyrate-ran-valerate) Bionanocomposites for Mechanical and Thermal Properties TuningBiomacromolecules2020215189290110.1021/acs.biomac.9b0176032078304Search in Google Scholar

Hassaini L, Kaci M, Touati N, Pillin I, Kervoelen A, Bruzaud S. Valorization of olive husk flour as a filler for biocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Effects of silane treatment. Polym Test 2017; 59:430-40.HassainiLKaciMTouatiNPillinIKervoelenABruzaudSValorization of olive husk flour as a filler for biocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Effects of silane treatmentPolym Test2017594304010.1016/j.polymertesting.2017.03.004Search in Google Scholar

Wu C-S, Liao H-T, Cai Y-X. Characterisation, biodegradability and application of palm fibre-reinforced polyhydroxyalkanoate composites. Polym Degrad Stabil 2017; 140:55-63.WuC-SLiaoH-TCaiY-XCharacterisation, biodegradability and application of palm fibre-reinforced polyhydroxyalkanoate compositesPolym Degrad Stabil2017140556310.1016/j.polymdegradstab.2017.04.016Search in Google Scholar

Wu C, Liao H. Interface design of environmentally friendly carbon nanotube-filled polyester composites: Fabrication, characterisation, functionality and application. Express Polym Lett 2017; 11(3).WuCLiaoHInterface design of environmentally friendly carbon nanotube-filled polyester composites: Fabrication, characterisation, functionality and applicationExpress Polym Lett201711310.3144/expresspolymlett.2017.20Search in Google Scholar

Wu C-S. Characterization, functionality and application of siliceous sponge spicules additive-based manufacturing biopolymer composites. Addit Manuf 2018; 22:13-20.WuC-SCharacterization, functionality and application of siliceous sponge spicules additive-based manufacturing biopolymer compositesAddit Manuf201822132010.1016/j.addma.2018.04.034Search in Google Scholar

Valentini F, Dorigato A, Rigotti D, Pegoretti A. Polyhydroxyalkanoates/fibrillated nanocellulose composites for additive manufacturing. J Polym Environ 2019; 27(6):1333-41.ValentiniFDorigatoARigottiDPegorettiAPolyhydroxyalkanoates/fibrillated nanocellulose composites for additive manufacturingJ Polym Environ201927613334110.1007/s10924-019-01429-8Search in Google Scholar

Ausejo JG, Rydz J, Musiol M, Sikorska W, Sobota M, Wlodarczyk J, Adamus G, Janeczek H, Kwiecien IK, Hercog A, Johnston B, Khan HR, Kannappan V, Jones KR, Morris MR, Jiang G, Radecka I, Kowalczuk M. A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polym Degrad Stabil 2018; 152:191-207.AusejoJGRydzJMusiolMSikorskaWSobotaMWlodarczykJAdamusGJaneczekHKwiecienIKHercogAJohnstonBKhanHRKannappanVJonesKRMorrisMRJiangGRadeckaIKowalczukMA comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blendPolym Degrad Stabil201815219120710.1016/j.polymdegradstab.2018.04.024Search in Google Scholar

Menčík P, Přikryl R, Stehnová I, Melčová V, Kontárová S, Figalla S, et al. Effect of selected commercial plasticizers on mechanical, thermal, and morphological properties of poly (3-hydroxybutyrate)/poly (lactic acid)/plasticizer biodegradable blends for three-dimensional (3d) print. Materials 2018; 11(10):1893.MenčíkPPřikrylRStehnováIMelčováVKontárováSFigallaSet alEffect of selected commercial plasticizers on mechanical, thermal, and morphological properties of poly (3-hydroxybutyrate)/poly (lactic acid)/plasticizer biodegradable blends for three-dimensional (3d) printMaterials20181110189310.3390/ma11101893621313230282917Search in Google Scholar

Kontárová S, Přikryl R, Melčová V, Menčík P, Horálek M, Figalla S, Plavec R, Feranc J, Sadilek J, Pospíšilová A. Printability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) Printing. Materials 2020; 13(21).KontárováSPřikrylRMelčováVMenčíkPHorálekMFigallaSPlavecRFerancJSadilekJPospíšilováAPrintability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) PrintingMaterials2020132110.3390/ma13214736766035133114009Search in Google Scholar

Ecker JV, Burzic I, Haider A, Hild S, Rennhofer H. Improving the impact strength of PLA and its blends with PHA in fused layer modelling. Polym Test 2019;78:105929.EckerJVBurzicIHaiderAHildSRennhoferHImproving the impact strength of PLA and its blends with PHA in fused layer modellingPolym Test20197810592910.1016/j.polymertesting.2019.105929Search in Google Scholar

Kaygusuz B, Özerinç S. Improving the ductility of polylactic acid parts produced by fused deposition modeling through polyhydroxyalkanoate additions. J Appl Polym Sci 2019; 136(43):48154.KaygusuzBÖzerinçSImproving the ductility of polylactic acid parts produced by fused deposition modeling through polyhydroxyalkanoate additionsJ Appl Polym Sci2019136434815410.1002/app.48154Search in Google Scholar

Pop MA, Coritoru C, Bedo T, Geamän V, Radomir I, Zaharia SM, Chicos LA. Influence of internal innovative architecture on the mechanical properties of 3D polymer printed parts. Polymers 2020; 12(5):1129.PopMACoritoruCBedoTGeamänVRadomirIZahariaSMChicosLAInfluence of internal innovative architecture on the mechanical properties of 3D polymer printed partsPolymers2020125112910.3390/polym12051129728530932423075Search in Google Scholar

Zaharia SM, Enescu LA, Pop MA. Mechanical performances of lightweight sandwich structures produced by material extrusion-based additive manufacturing. Polymers 2020; 12(8):1740.ZahariaSMEnescuLAPopMAMechanical performances of lightweight sandwich structures produced by material extrusion-based additive manufacturingPolymers2020128174010.3390/polym12081740746483632759825Search in Google Scholar

Oviedo AM, Puente AH, Bernal C, Perez E. Mechanical evaluation of polymeric filaments and their corresponding 3D printed samples. Polym Test 2020; 88:106561.OviedoAMPuenteAHBernalCPerezEMechanical evaluation of polymeric filaments and their corresponding 3D printed samplesPolym Test20208810656110.1016/j.polymertesting.2020.106561Search in Google Scholar

Guessasma S, Belhabib S, Nouri H. Microstructure and mechanical performance of 3D printed wood-PLA/PHA using fused deposition modeling: effect of printing temperature. Polymers 2019; 11(11):1778.GuessasmaSBelhabibSNouriHMicrostructure and mechanical performance of 3D printed wood-PLA/PHA using fused deposition modeling: effect of printing temperaturePolymers20191111177810.3390/polym11111778691831831671901Search in Google Scholar

Ausejo JG, Rydz, J, Musiol M, Sikorska W, Janeczek H, Sobota M, Wlodarczyk J, Szeluga U, Hercog A, Kowalczuk M. Three-dimensional printing of PLA and PLA/ PHA dumbbell-shaped specimens of crisscross and transverse patterns as promising materials in emerging application areas: Prediction study. Polym Degrad Stabil 2018; 156:100-10.AusejoJGRydzJMusiolMSikorskaWJaneczekHSobotaMWlodarczykJSzelugaUHercogAKowalczukM.Three-dimensional printing of PLA and PLA/ PHA dumbbell-shaped specimens of crisscross and transverse patterns as promising materials in emerging application areas: Prediction studyPolym Degrad Stabil20181561001010.1016/j.polymdegradstab.2018.08.008Search in Google Scholar

Rydz J, Wlodarczyk J, Ausejo JG, Musiol M, Sikorska W, Sobota M, Hercog A, Duale K, Janeczek H. Three-dimensional printed PLA and PLA/PHA dumbbell-shaped specimens: material defects and their impact on degradation behavior. Materials 2020; 13(8):1-16.RydzJWlodarczykJAusejoJGMusiolMSikorskaWSobotaMHercogADualeKJaneczekHThree-dimensional printed PLA and PLA/PHA dumbbell-shaped specimens: material defects and their impact on degradation behaviorMaterials202013811610.3390/ma13082005721573132344751Search in Google Scholar

Puppi D, Morelli A, Chiellini F. Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/ poly(ε-caprolactone) blend scaffolds for tissue engineering. Bioengineering 2017; 4(2):49.PuppiDMorelliAChielliniFAdditive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/ poly(ε-caprolactone) blend scaffolds for tissue engineeringBioengineering2017424910.3390/bioengineering4020049559046528952527Search in Google Scholar

Jain S, Fuoco T, Yassin MA, Mustafa K, Finne-Wistrand A. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters. Biomacromolecules 2020; 21(2):388-96.JainSFuocoTYassinMAMustafaKFinne-WistrandAPrintability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and CopolyestersBiomacromolecules20202123889610.1021/acs.biomac.9b0111231566357Search in Google Scholar

Jain S, Yassin MA, Fuoco T, Liu H, Mohamed-Ahmed S, Mustafa K, Finne-Wistrand A. Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification. J Tissue Eng 2020; 11:1-17.JainSYassinMAFuocoTLiuHMohamed-AhmedSMustafaKFinne-WistrandAEngineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modificationJ Tissue Eng20201111710.1177/2041731420954316749897232983402Search in Google Scholar

Zhou X, Nowicki M, Sun H, Hann SY, Cui H, Esworthy T, Lee JD, Plesniak M, Zhang LG. 3D Bioprinting-Tunable Small-Diameter Blood Vessels with Biomimetic Biphasic Cell Layers. ACS Appl Mater Inter 2020; 12(41):45904-15.ZhouXNowickiMSunHHannSYCuiHEsworthyTLeeJDPlesniakMZhangLG3D Bioprinting-Tunable Small-Diameter Blood Vessels with Biomimetic Biphasic Cell LayersACS Appl Mater Inter20201241459041510.1021/acsami.0c1487133006880Search in Google Scholar

Narayanan LK, Shirwaiker RA. Experimental characterization and finite element modeling of the effects of 3D bioplotting process parameters on structural and tensile properties of polycaprolactone (PCL) scaffolds. Applied Sciences 2020; 10(15):5289.NarayananLKShirwaikerRAExperimental characterization and finite element modeling of the effects of 3D bioplotting process parameters on structural and tensile properties of polycaprolactone (PCL) scaffoldsApplied Sciences20201015528910.3390/app10155289Search in Google Scholar

Balogová AF, Hudák R, Tóth T, Schnitzer M, Feranc J, Bakoš D, Živčák J. Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution. J Biotechnol 2018; 284:123-30.BalogováAFHudákRTóthTSchnitzerMFerancJBakošDŽivčákJDetermination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitutionJ Biotechnol20182841233010.1016/j.jbiotec.2018.08.01930171928Search in Google Scholar

Pan T, Song W, Cao X, Wang Y. 3D bioplotting of gelatin/ alginate scaffolds for tissue engineering: influence of cross-linking degree and pore architecture on physicochemical properties. J Mater Sci Technol 2016; 32(9):889-900.PanTSongWCaoXWangY3D bioplotting of gelatin/ alginate scaffolds for tissue engineering: influence of cross-linking degree and pore architecture on physicochemical propertiesJ Mater Sci Technol201632988990010.1016/j.jmst.2016.01.007Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other