Cite

Chen H, Hu B, Zhao L, Shi D, She Z, Huang X, Priyadarshani S, Niu X, Qin Y. Differential expression analysis of reference genes in pineapple (Ananas comosus l.) during reproductive development and response to abiotic stress, hormonal stimuli. Trop Plant Biol 2019; 12: 67-77.ChenHHuBZhaoLShiDSheZHuangXPriyadarshaniSNiuXQinYDifferential expression analysis of reference genes in pineapple (Ananas comosus l.) during reproductive development and response to abiotic stress, hormonal stimuliTrop Plant Biol201912677710.1007/s12042-019-09218-2Search in Google Scholar

Nath V, Kumar G, Pandey S, Pandey S. Impact of climate change on tropical fruit production systems and its mitigation strategies. In: Sheraz Mahdi S (ed.) Climate Change and Agriculture in India: Impact and Adaptation. 2019. Springer, Berlin, pp. 129-146.NathVKumarGPandeySPandeySImpact of climate change on tropical fruit production systems and its mitigation strategiesSheraz MahdiSClimate Change and Agriculture in India: Impact and Adaptation2019SpringerBerlin12914610.1007/978-3-319-90086-5_11Search in Google Scholar

Priyadarshani S, Cai H, Zhou Q, Liu Y, Cheng Y, Xiong J, Patson DL, Cao S, Zhao H, Qin Y. An efficient Agrobacterium mediated transformation of pineapple with GFP-tagged protein allows easy, non-destructive screening of transgenic pineapple plants. Biomolecules 2019; 9(10): 617.PriyadarshaniSCaiHZhouQLiuYChengYXiongJPatsonDLCaoSZhaoHQinYAn efficient Agrobacterium mediated transformation of pineapple with GFP-tagged protein allows easy, non-destructive screening of transgenic pineapple plantsBiomolecules201991061710.3390/biom9100617684383631627353Search in Google Scholar

Wali N. Pineapple (Ananas comosus). In: Nabavi S, Sanches Silva A (eds.) Nonvitamin and nonmineral nutritional nupplements. 2019. Elsevier, pp. 367-373.WaliNPineapple (Ananas comosus)NabaviSSanches SilvaANonvitamin and nonmineral nutritional nupplements2019Elsevier36737310.1016/B978-0-12-812491-8.00050-3Search in Google Scholar

Escalona M, Lorenzo JC, González B, Daquinta M, Borroto C, González JL, Desjardines Y. Pineapple micropropagation in temporary immersion systems. Plant Cell Rep 1999; 18: 743-748.EscalonaMLorenzoJCGonzálezBDaquintaMBorrotoCGonzálezJLDesjardinesYPineapple micropropagation in temporary immersion systemsPlant Cell Rep19991874374810.1007/s002990050653Search in Google Scholar

Gómez D, Escalante D, Hajari E, Vicente O, Sershen, Lorenzo JC. Assessing the effects of in vitro imposed water stress on pineapple growth in relation to biochemical stress indicators using polynomial regression analysis. Not Bot Horti Agrobot Cluj 2020; 48: 162-170.GómezDEscalanteDHajariEVicenteOLorenzoJCAssessing the effects of in vitro imposed water stress on pineapple growth in relation to biochemical stress indicators using polynomial regression analysisNot Bot Horti Agrobot Cluj20204816217010.15835/nbha48111844Search in Google Scholar

Daquinta M, Benegas R. Brief review of tissue culture of pineapple. Pineap News 1997; 3: 7-9.DaquintaMBenegasRBrief review of tissue culture of pineapplePineap News1997379Search in Google Scholar

Botella J, Fairbairn D. Present and future potential of pineapple biotechnology. Acta Hort 2005; 622: 23-28.BotellaJFairbairnDPresent and future potential of pineapple biotechnologyActa Hort2005622232810.17660/ActaHortic.2005.666.1Search in Google Scholar

Wang M-L, Uruu G, Xiong L, He X, Nagai C, Cheah K, Hu J, Nan G-L, Sipes B, Atkinson H. Production of transgenic pineapple (Ananas comosus (L.) Merr.) plants via adventitious bud regeneration. In Vitro Cell Dev Biol-Plant 2009; 45: 112-121.WangM-LUruuGXiongLHeXNagaiCCheahKHuJNanG-LSipesBAtkinsonHProduction of transgenic pineapple (Ananas comosus (L.) Merr.) plants via adventitious bud regenerationIn Vitro Cell Dev Biol-Plant20094511212110.1007/s11627-009-9208-8Search in Google Scholar

Loyola-González O, Medina-Pérez MA, Hernández-Tamayo D, Monroy R, Carrasco-Ochoa JA, García-Borroto M. A pattern-based approach for detecting pneumatic failures on Temporary Immersion Bioreactors. Sensors 2019; 19(2): 414.Loyola-GonzálezOMedina-PérezMAHernández-TamayoDMonroyRCarrasco-OchoaJAGarcía-BorrotoMA pattern-based approach for detecting pneumatic failures on Temporary Immersion BioreactorsSensors201919241410.3390/s19020414635880730669544Search in Google Scholar

Parveen S, Mir H, Ranjan T, Pal AK, Kundu M. Effect of surface sterilants on in vitro establishment of pineapple (Ananas comosus (L.) Merill.) cv. Kew. Curr J Appl Sci Technol 2019; 33(2): 1-6.ParveenSMirHRanjanTPalAKKunduMEffect of surface sterilants on in vitro establishment of pineapple (Ananas comosus (L.) Merill.) cv. KewCurr J Appl Sci Technol20193321610.9734/cjast/2019/v33i230050Search in Google Scholar

Venâncio JB, Araújo WF, Chagas EA. Acclimatization of micropropagated seedlings of pineapple cultivars on organic substrates. Científica 2019; 47: 52-61.VenâncioJBAraújoWFChagasEAAcclimatization of micropropagated seedlings of pineapple cultivars on organic substratesCientífica201947526110.15361/1984-5529.2019v47n1p52-61Search in Google Scholar

Yanes-Paz E, González J, Sánchez R (2000) A technology of acclimatization of pineapple vitroplants. Pineap News 2000; 7: 5-6.Yanes-PazEGonzálezJSánchezR2000A technology of acclimatization of pineapple vitroplantsPineap News756Search in Google Scholar

González R, Laudat T, Arzola M, Méndez R, Marrero P, Pulido L, Dibut B, Lorenzo JC. Effect of Azotobacter chroococcum on in vitro pineapple plants’ growth during acclimatization. In Vitro Cell Dev Biol-Plant 2010; 47(3): 387-390.GonzálezRLaudatTArzolaMMéndezRMarreroPPulidoLDibutBLorenzoJCEffect of Azotobacter chroococcum on in vitro pineapple plants’ growth during acclimatizationIn Vitro Cell Dev Biol-Plant201047338739010.1007/s11627-010-9334-3Search in Google Scholar

González R, Serrato R, Molina J, Aragón C, Olalde V, Pulido L, Dibut B, Lorenzo JC. Biochemical and physiological changes produced by Azotobacter chroococcum (INIFAT5 strain) on pineapple in vitro-plantlets during acclimatization. Acta Physiol Plant 2013; 35: 3483-3487.GonzálezRSerratoRMolinaJAragónCOlaldeVPulidoLDibutBLorenzoJCBiochemical and physiological changes produced by Azotobacter chroococcum (INIFAT5 strain) on pineapple in vitro-plantlets during acclimatizationActa Physiol Plant2013353483348710.1007/s11738-013-1373-zSearch in Google Scholar

Mengesha A, Ayenew B, Tadesse T. Acclimatization of in vitro propagated pineapple (Ananas comosus (L.), var. Smooth cayenne) plantlets to ex vitro condition in Ethiopia. Am J Plant Sci 2013; 4(2): 317-323.MengeshaAAyenewBTadesseTAcclimatization of in vitro propagated pineapple (Ananas comosus (L.), var. Smooth cayenne) plantlets to ex vitro condition in EthiopiaAm J Plant Sci20134231732310.4236/ajps.2013.42042Search in Google Scholar

Rodríguez-Escriba RC, Rodríguez R, López D, Lorente GY, Pino Y, Aragón CE, Garza Y, Podestá FE, González-Olmedo JL. High light intensity increases the CAM expression in “MD-2” micro-propagated pineapple plants at the end of the acclimatization stage. Am J Plant Sci 2015; 6(19): 3109-3118.Rodríguez-EscribaRCRodríguezRLópezDLorenteGYPinoYAragónCEGarzaYPodestáFEGonzález-OlmedoJLHigh light intensity increases the CAM expression in “MD-2” micro-propagated pineapple plants at the end of the acclimatization stageAm J Plant Sci20156193109311810.4236/ajps.2015.619303Search in Google Scholar

Rodríguez-Escriba RC, Rodríguez-Cartaya ID, Lorente GY, López D, Izquierdo RE, Borroto LS, Garza-García Y, Aragón CE, Podestá FE, Rodríguez R. Efecto del déficit hídrico sobre cambios morfo-fisiológicos y bioquímicos en plantas micropropagadas de piña MD-2 en la etapa final de aclimatización. Cult Trop 2016; 37: 64-73.Rodríguez-EscribaRCRodríguez-CartayaIDLorenteGYLópezDIzquierdoREBorrotoLSGarza-GarcíaYAragónCEPodestáFERodríguezREfecto del déficit hídrico sobre cambios morfo-fisiológicos y bioquímicos en plantas micropropagadas de piña MD-2 en la etapa final de aclimatizaciónCult Trop2016376473Search in Google Scholar

Lorente-González GY, Pino-Legrat Y, Rodríguez-Escriba RC, Pérez-Borroto LS, Nápoles-Borrero L, Mendoza-Rodríguez J, Cardoso D, Alonso A, Rodríguez-Sánchez R, González-Olmedo J. Foliar fertilization of ‘MD-2’ pineapple plants (Ananas comosus var. comosus) during the acclimatization phase. Newsletter of the Pineapple Working Group, International Society for Horticultural Science 2018; 25: 13-17.Lorente-GonzálezGYPino-LegratYRodríguez-EscribaRCPérez-BorrotoLS,Nápoles-BorreroLMendoza-RodríguezJCardosoDAlonsoARodríguez-SánchezRGonzález-OlmedoJFoliar fertilization of ‘MD-2’ pineapple plants (Ananas comosus var. comosus) during the acclimatization phaseNewsletter of the Pineapple Working Group, International Society for Horticultural Science2018251317Search in Google Scholar

Atkinson JA, Lobet G, Noll M, Meyer PE, Griffiths M, Wells DM. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies. GigaScience 2017; 6: gix084.AtkinsonJALobetGNollMMeyerPEGriffithsMWellsDMCombining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studiesGigaScience20176gix08410.1093/gigascience/gix084563229229020748Search in Google Scholar

Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. GigaScience 2017; 6: gix083.PoundMPAtkinsonJATownsendAJWilsonMHGriffithsMJacksonASBulatATzimiropoulosGWellsDMMurchieEHDeep machine learning provides state-of-the-art performance in image-based plant phenotypingGigaScience20176gix08310.1093/gigascience/gix083563229629020747Search in Google Scholar

Gupta SD, Ibaraki Y, Pattanayak A. Development of a digital image analysis method for real-time estimation of chlorophyll content in micropropagated potato plants. Plant Biotech Rep 2013; 7: 91-97.GuptaSDIbarakiYPattanayakADevelopment of a digital image analysis method for real-time estimation of chlorophyll content in micropropagated potato plantsPlant Biotech Rep20137919710.1007/s11816-012-0240-5Search in Google Scholar

Niazian M, Sadat-Noori SA, Abdipour M, Tohidfar M, Mortazavian SMM. Image processing and artificial neural network-based models to measure and predict physical properties of embryogenic callus and number of somatic embryos in ajowan (Trachyspermum ammi (L.) Sprague). In Vitro Cell Dev Biol-Plant 2018; 54: 54-68.NiazianMSadat-NooriSAAbdipourMTohidfarMMortazavianSMMImage processing and artificial neural network-based models to measure and predict physical properties of embryogenic callus and number of somatic embryos in ajowan (Trachyspermum ammi (L.) Sprague)In Vitro Cell Dev Biol-Plant201854546810.1007/s11627-017-9877-7Search in Google Scholar

Ollier M, Talle V, Brisset AL, Le Bihan Z, Duerr S, Lemmens M, Goudemand E, Robert O, Hilbert JL, Buerstmayr H. Whitened kernel surface: A fast and reliable method for assessing Fusarium severity on cereal grains by digital picture analysis. Plant Breed 2019; 138: 69-81.OllierMTalleVBrissetALLe BihanZDuerrSLemmensMGoudemandERobertOHilbertJLBuerstmayrHWhitened kernel surface: A fast and reliable method for assessing Fusarium severity on cereal grains by digital picture analysisPlant Breed2019138698110.1111/pbr.12667Search in Google Scholar

Wang G, Sun Y, Wang J. Automatic image-based plant disease severity estimation using deep learning. Comp Intel Neurosci 2017; 2017: 2917536.WangGSunYWangJAutomatic image-based plant disease severity estimation using deep learningComp Intel Neurosci20172017291753610.1155/2017/2917536551676528757863Search in Google Scholar

Asaari MSM, Mishra P, Mertens S, Dhondt S, Inzé D, Wuyts N, Scheunders P. Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS J Photogram Rem Sens 2018; 138: 121-138.AsaariMSMMishraPMertensSDhondtSInzéDWuytsNScheundersPClose-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platformISPRS J Photogram Rem Sens201813812113810.1016/j.isprsjprs.2018.02.003Search in Google Scholar

Py C, Lacoeuille JJ, Teisson C. L´ananas, sa culture, ses produits. Techniques agricoles et productions tropicales vol. 33. Maisoenneuve and Larose 1984; Paris, pp. 44-45.PyCLacoeuilleJJTeissonCL´ananas, sa culture, ses produits. Techniques agricoles et productions tropicales vol. 33. Maisoenneuve and Larose1984Paris4445Search in Google Scholar

Ivanov Z. The Agricultural Experimentation 1989. Pueblo y Educación, Havana, pp. 332.IvanovZThe Agricultural Experimentation1989Pueblo y EducaciónHavana332Search in Google Scholar

Aguilar M, Pozo J, Aguilar F, García A, Fernández I, Negreiros J, Sánchez-Hermosilla J. Application of close-range photogrammetry and digital photography analysis for the estimation of leaf area index in a greenhouse tomato culture. Int Arch Photogram Rem Sens Spat Inf Sci 2010; 38(5): 5-10.AguilarMPozoJAguilarFGarcíaAFernándezINegreirosJSánchez-HermosillaJApplication of close-range photogrammetry and digital photography analysis for the estimation of leaf area index in a greenhouse tomato cultureInt Arch Photogram Rem Sens Spat Inf Sci2010385510Search in Google Scholar

Minervini M, Abdelsamea MM, Tsaftaris SA. Image-based plant phenotyping with incremental learning and active contours. Ecol Inf 2014; 23: 35-48.MinerviniMAbdelsameaMMTsaftarisSAImage-based plant phenotyping with incremental learning and active contoursEcol Inf201423354810.1016/j.ecoinf.2013.07.004Search in Google Scholar

Minervini M, Giuffrida MV, Perata P, Tsaftaris SA. Phenotiki: An open software and hardware platform for affordable and easy image‐based phenotyping of rosette‐shaped plants. The Plant J 2017; 90: 204-216.MinerviniMGiuffridaMVPerataPTsaftarisSAPhenotiki: An open software and hardware platform for affordable and easy image‐based phenotyping of rosette‐shaped plantsThe Plant J20179020421610.1111/tpj.1347228066963Search in Google Scholar

Ubbens J, Cieslak M, Prusinkiewicz P, Stavness I. The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant Meth 2018; 14: 6.UbbensJCieslakMPrusinkiewiczPStavnessIThe use of plant models in deep learning: an application to leaf counting in rosette plantsPlant Meth201814610.1186/s13007-018-0273-z577303029375647Search in Google Scholar

Rincón Guerrero N, Olarte Quintero MA, Pérez Naranjo JC. Leaf area measurement in photographs taken with a webcam, a cell phone or a semi professional camera. Rev Fac Nac Agron Medellín 2012; 65: 6399-6405.Rincón GuerreroNOlarte QuinteroMAPérezNaranjo JCLeaf area measurement in photographs taken with a webcam, a cell phone or a semi professional cameraRev Fac Nac Agron Medellín20126563996405Search in Google Scholar

Guo W, Zheng B, Duan T, Fukatsu T, Chapman S, Ninomiya S (2017) EasyPCC: benchmark datasets and tools for high-throughput measurement of the plant canopy coverage ratio under field conditions. Sensors 2017; 17: 798.GuoWZhengBDuanTFukatsuTChapmanSNinomiyaS2017EasyPCC: benchmark datasets and tools for high-throughput measurement of the plant canopy coverage ratio under field conditionsSensors;1779810.3390/s17040798542215928387746Search in Google Scholar

Chien C-L, Tseng D-C (2011) Color image enhancement with exact HSI color model. Int J Innov Comp Inf Cont 2011; 7: 6691-6710.ChienC-LTsengD-C2011Color image enhancement with exact HSI color modelInt J Innov Comp Inf Cont766916710Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other