Open Access

HPLC-MS Determination of Acrolein and Acetone Generated from 13C3 -Labeled Glycerol Added to Cigarette Tobacco Using Two Machine-Smoking Regimes


The extent of blend glycerol degradation in a burning cigarette to form acrolein and acetone has been quantitatively determined by the addition of glycerol-13C3 to three styles of a leading commercial cigarette brand. Multiple Cambridge pads soaked with a solution of 2,4-dinitrophenylhydrazine (DNPH) were employed to trap hydrazone derivatives of low molecular weight carbonyl compounds in both mainstream and sidestream smoke. High performance liquid chromatography coupled with negative ion mass spectrometry was used to isolate DNPH derivatives of the volatile carbonyl products of combustion and to ascertain their concentration. Acrolein, acetone, and propionaldehyde were the principal compounds of interest. The DNPH derivatives of acrolein-13C3 and acetone-13C3 were independently synthesized, and they served as external standards for absolute quantitation. The cost of fully labeled propionaldehyde precluded its use in this study. The brand styles selected for study represent the cigarette design features that are most prevalent in the U.S. market today and afford a representative range of standardized “tar” yields (14, 10, and 5 mg/cig, respectively by the Cambridge Filter Method). The brand styles studied are part of a commercial cigarette brand family that does not contain additives to the tobacco blend, including glycerol. Mainstream smoke was generated by an automated smoking machine employing the standard Cambridge Filter Smoking Regime and a more intense regime requiring larger, more frequent puffs and 100% vent blocking that is specified for regulatory purposes by the Canadian federal government. The research indicated that only a small fraction of added glycerol (~0.25%-0.30%, w/w) was converted to the two compounds of interest, with the larger portion generally observed in sidestream smoke. Less than 0.1% of the added glycerol was converted to acrolein in mainstream smoke for all cigarette designs and smoking regimes studied.

Publication timeframe:
4 times per year
Journal Subjects:
General Interest, Life Sciences, other, Physics