Open Access

Non-Destructive Assessment of Leaf Chlorophyll and Epidermal Flavonoids in Two Tomato Cultivars (Solanum lycopersicum L.) Grown Under Different Trichoderma Spp. Treatments


Cite

Agati G., Foschi L., Grossi N., Guglielminetti L., Cerovic Z.G., Volterrani M. (2013): Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. European journal of agronomy, 45: 39-51. Search in Google Scholar

Agati G., Tuccio L., Kusznierewicz B., Chmiel T., Bartoszek A., Kowalski A., Kaniszewski S. (2016): Nondestructive optical sensing of flavonols and chlorophyll in white head cabbage (Brassica oleracea L. var. capitata subvar. alba) grown under different nitrogen regimens. Journal of agricultural and food chemistry, 64(1): 85-94. Search in Google Scholar

Alexandru M., Lazăr D.A.N.I.E.L.A., Ene M., Sesan T.E. (2013): Influence of some Trichoderma species on photosynthesis intensity and pigments in tomatoes. Romanian Biotechnological Letters, 18(4): 8499-8510. Search in Google Scholar

Alfiky A. & Weisskopf L. (2021): Deciphering Trichoderma–plant–pathogen interactions for better development of biocontrol applications. Journal of Fungi, 7(1): 61. Search in Google Scholar

Cerović Z.G., Cartelat A., Goulas Y., Meyer, S. (2005): In-the-field assessment of wheat-leaf polyphenolics using the new optical leaf-clip Dualex. Precision agriculture, 5: 243-249. Search in Google Scholar

Cerović Z.G., Ghozlen N.B., Milhade C., Obert M., Debuisson S., Moigne M.L. (2015): Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on dualex leaf-clip measurements in the field. Journal of Agricultural and Food Chemistry, 63(14): 3669-3680. Search in Google Scholar

FAOSTAT (2019): Food and Agricultural Organization of the United Nations. Available at http://www.fao.org/faostat/en/#data/RF (accessed 18.02.2023). Search in Google Scholar

Guler N.S., Pehlivan N., Karaoglu S.A., Guzel S., Bozdeveci A. (2016): Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defense in maize seedlings. Acta Physiologiae Plantarum, 38: 1-9. Search in Google Scholar

Hassan S. & Mathesius U. (2012): The role of flavonoids in root–rhizosphere signaling: opportunities and challenges for improving plant–microbe interactions. Journal of experimental botany, 63(9): 3429-3444. Search in Google Scholar

Kaniszewski S., Kowalski A., Dysko J., Agati G. (2021): Application of a Combined Transmittance/Fluorescence Leaf Clip Sensor for the Nondestructive Determination of Nitrogen Status in White Cabbage Plants. Sensors, 21(2): 482. Search in Google Scholar

Mayo-Prieto S., Marra R., Vinale F., Rodríguez-González Á., Woo S.L., Lorito M., Casquero, P.A. (2019): Effect of Trichoderma velutinum and Rhizoctonia solani on the Metabolome of Bean Plants (Phaseolus vulgaris L.). International journal of molecular sciences, 20(3): 549. Search in Google Scholar

Ortega-Garcia J.G., Montes-Belmont, R., Rodriguez-Monroy M., Ramirez-Trujillo J.A., Suarez-Rodriguez R., Sepulveda-Jimenez G. (2015): Effect of Trichoderma asperellum applications and mineral fertilization on growth promotion and the content of phenolic compounds and flavonoids in onions. Scientia Horticulturae, 195: 8–16 Search in Google Scholar

Padilla F.M., Peña-Fleitas M.T., Gallardo M., Thompson R.B. (2014): Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. European journal of agronomy, 58: 39-52. Search in Google Scholar

Racić G., Vukelić I., Prokić L., Ćurčić N., Zorić M., Jovanović L., Panković, D. (2018): The influence of Trichoderma brevicompactum treatment and drought on physiological parameters, abscisic acid content and signaling pathway marker gene expression in leaves and roots of tomato. Annals of Applied Biology, 173(3): 213-221. Search in Google Scholar

Şesan T.E., Oancea A.O., Ştefan L. M., Mănoiu V.S., Ghiurea M., Răut I., Constantinescu-Aruxandei D., Toma A., Savin S., Bira A.F., Pomohaci C.M. (2020): Effects of Foliar Treatment with a Trichoderma Plant Biostimulant Consortium on Passiflora caerulea L. Yield and Quality. Microorganisms, 8(1): 123. Search in Google Scholar

Singh S.P., Singh H.B., Singh D.K., Rakshit A. (2014): Trichoderma-mediated enhancement of nutrient uptake and reduction in the incidence of Rhizoctonia solani in tomato. Egyptian Journal of Biology, 16: 29-38. Search in Google Scholar

Szekeres A., Kredics L., Antal Z., Kevei F., Manczinger L. (2004): Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiology Letters, 233(2): 215-222. Search in Google Scholar

TIBCO Software Inc (2017): Statistica (data analysis software system), version 13. http://statistica.io Search in Google Scholar

Vukelić I.D., Racić G.M., Bojović M.M., Ćurčić N.Ž., Mrkajić D.Z., Jovanović Lj.B., Panković D.M. (2020): Effect of Trichoderma harzianum on morpho-physiological parameters and metal uptake of tomato plants. Zbornik Matice srpske za prirodne nauke, (139): 61-71. Search in Google Scholar

Vukelić I.D., Prokić L.T., Racić G.M., Pešić M.B., Bojović M.M., Sierka E.M., Panković D.M. (2021): Effects of Trichoderma harzianum on photosynthetic characteristics and fruit quality of tomato plants. International Journal of Molecular Sciences, 22(13): 6961 Search in Google Scholar

Vukelić I. (2022): Molekularno-fiziološki mehanizmi interakcije paradajza (Solanum lycopersicum L.) i odabranih izolata gljiva roda Trichoderma. Univerzitet u Beogradu. Search in Google Scholar

Zaidi N.W., Dar M.H., Singh S., Singh U.S. (2014): Trichoderma species as abiotic stress relievers in plants. In: Biotechnology and biology of Trichoderma (pp. 515-525). Elsevier. Search in Google Scholar

eISSN:
2466-4774
Language:
English