Open Access

Triclosan Influences on Reproductive Physiology of Climbing Perch in the Spawning Phase


Cite

Alfhili, M.A., Lee, M.H. (2019): Triclosan: An update on biochemical and molecular mechanisms. Oxid Med Cell Longev, 1607304.10.1155/2019/1607304 Search in Google Scholar

APHA (1998): Standard methods for the examination of water and waste water, 20th Edition, Washington, DC. Search in Google Scholar

Arukwe, A., Goksoyr, A. (2003): Eggshell and egg yolk proteins in fish: Hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp Hepatol 2(1), 1-21.10.1186/1476-5926-2-4 Search in Google Scholar

Asifa, K.P., Chitra, K.C. (2019): Effect of chlordecone on the reproductive potential of the cichlid fish, Pseudetroplus maculatus (Bloch, 1795). J Aquat Res Mar Sci, 163-177.10.29199/2639-4618/ARMS-202033 Search in Google Scholar

Balakrishna, K., Rath, A., Praveenkumarreddy, Y., Guruge, K.S., Subedi, B. (2017): A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Saf 137, 113-120.10.1016/j.ecoenv.2016.11.014 Search in Google Scholar

Bao, S, He, C., Ku, P., Xie, M., Lin, J., Lu, S., Nie, X. (2021): Effects of triclosan on the RedoximiRs/ Sirtuin/ Nrf2/ ARE signaling pathway in mosquitofish (Gambusia affinis). Aquat Toxicol 230:105679.10.1016/j.aquatox.2020.105679 Search in Google Scholar

Bergmeyer, M.U. (1974): Steroid dehydrogenase. In Methods of enzymatic analysis, ed. H. U. Bergmeyer, 476-477. New York: Academic Press. Search in Google Scholar

Bernier, N.J., Peter, R.E. (2001): The hypothalamic-pituitary-interrenal axis and the control of food intake in teleost fish. Comp Biochem Physiol B Biochem Mol Biol 129 (2-3), 639-644.10.1016/S1096-4959(01)00360-8 Search in Google Scholar

Bharti, S., Rasool, F. (2021): Analysis of the biochemical and histopathological impact of a mild dose of commercial malathion on Channa punctatus (Bloch) fish. Toxicol Reprod 8, 443-455.10.1016/j.toxrep.2021.02.018793380133717997 Search in Google Scholar

Caille,, N., Rodina, M., Kocour, M., Gela, D., Flajshans, M., Linhart, O. (2006): Quantity, motility and fertility of tench Tinca tinca (L.) sperm in relation to LHRH analogue and carp pituitary treatments. Aquac Int 14 (12), 75-87.10.1007/s10499-005-9015-0 Search in Google Scholar

Chang, J., Liu, S, Zhou, S., Wang, M., Zhu, G. (2013): Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio). Exp Toxicol Pathol 65(1-2), 205-209.10.1016/j.etp.2011.08.00721920721 Search in Google Scholar

Cnaani, A., Tinman, S., Avidar, Y., Ron, M., Hulata, G. (2004): Comparative study of biochemical parameters in response to stress in Oreochromis aureus, O. mossambicus and two strains of O. niloticus. Aquac Res 35(15): 1434-1440.10.1111/j.1365-2109.2004.01167.x Search in Google Scholar

Copitch, J.L., Whitehead R.N., Webber M.A. (2010): Prevalence of decreased susceptibility to triclosan in Salmonella enterica isolates from animals and humans and association with multiple drug resistance. Int J Antimicrob Agents 36(3): 247-251.10.1016/j.ijantimicag.2010.04.01220541914 Search in Google Scholar

Crofton, K.M., Paul, K.B., DeVito, M.J., Hedge, J.M. (2007): Short-term in vivo exposure to the water contaminant triclosan: Evidence for disruption of thyroxine. Environ Toxicol Pharmacol 24(2): 194-197.10.1016/j.etap.2007.04.00821783810 Search in Google Scholar

Denslow, N.D., Chow, M..C, Kroll, K.J., Green, L. (1999): Vitellogenin as a biomarker of exposure for estrogen or estrogen mimics. Ecotoxicology 8(5): 385-398.10.1023/A:1008986522208 Search in Google Scholar

Dhillon, G.S., Kaur, S., Pulicharla, R., Brar, S.K., Cledon, M., Verma, M., Surampalli, R.Y. (2015): Triclosan: Current status, occurrence, environmental risks and bioaccumulation potential. Int J Environ Res Public Health 12: 5657-5684.10.3390/ijerph120505657445499026006133 Search in Google Scholar

Dodson, R.E., Boronow, K.E., Susmann, H., Udesky, J.O., Rodgers, KM, Weller D, Woudneh M, Brody, J.G., Rudel, R..A (2020): Consumer behavior and exposure to parabens, bisphenols, triclosan, dichlorophenols, and benzophenone-3: Results from a crowd sourced biomonitoring study. Int J Hyg Environ Health 11362410.1016/j.ijheh.2020.113624 Search in Google Scholar

Eliasson, R., Treichl, L. (1977): Supravital staining of human spermatozoa. Fertil Steril 22(2): 134-137.10.1016/S0015-0282(16)42927-4 Search in Google Scholar

Falisse, E., Ducos, B., Stockwell, P.A., Morison, I.M., Chatterjee, A., Silvestre, F. (2018): DNA methylation and gene expression alterations in zebrafish early-life stages exposed to the antibacterial agent triclosan. Environ Pollut 243(PtB):1867-1877.10.1016/j.envpol.2018.10.004 Search in Google Scholar

Filby, A.L., Thorpe, K.L., Maack, G., Tyler, C.R. (2007): Gene expression profiles revealing the mechanisms of anti-androgen- and estrogen-induced feminization in fish. Aquat Toxicol 81(2): 219-231.10.1016/j.aquatox.2006.12.003 Search in Google Scholar

Grandgirard, D., Furi, L., Ciusa, M.L., Baldassarri, L., Knight, D.R., Morrissey, I., Largiader, C.R., Leib, S.L., Oggioni, M.R. (2015): Mutations upstream of FabI in triclosan resistant Staphylococcus aureus strains are associated with elevated FabI gene expression. BMC Genomics 16: 345.10.1186/s12864-015-1544-y Search in Google Scholar

Grimes, C.B., Huntsman, G.R. (1980): Reproductive biology of vermilion snapper, Rhomboplites aurorubens from North Carolina and South Carolia. Fish Bull 78: 137-146. Search in Google Scholar

Gyimah, E., Dong, X., Qiu, W., Zhang,. Z, Xu, H. (2020): Sublethal concentrations of triclosan elicited oxidative stress, DNA damage, and histological alterations in the liver and brain of adult zebrafish. Environ Sci Pollut Res Int 27 (14): 17329-17338.10.1007/s11356-020-08232-2 Search in Google Scholar

Hennies, M., Wiesmann, M., Allner, B., Sauerwein, H. (2003): Vitellogenin in carp (Cyprinus carpio) and perch (Perca fluviatilis): Purification, characterization and development of an ELISA for the detection of estrogenic effects. Sci Total Environ 309(1-3):. 93-103.10.1016/S0048-9697(03)00005-6 Search in Google Scholar

Ho, J.C.H., Hsiao, C.D., Kawakami, K., Tse, W.K.F. (2016): Triclosan (TCS) exposure impairs lipid metabolism in zebrafish embryos. Aquat Toxicol 173: 29-35.10.1016/j.aquatox.2016.01.00126828895 Search in Google Scholar

Horie, Y., Yamagishi, T., Takahashi, H., Iguchi, T., Tatarazako, N. (2018): Effects of triclosan on Japanese medaka (Oryzias latipes) during embryo development, early life stage and reproduction. J Appl Toxicol 38 (4): 544-551.10.1002/jat.356129181881 Search in Google Scholar

Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsushi, H., Ishibashi, Y., Takao, Y., Arizono, K. (2004): Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat Toxicol 67: 167-179.10.1016/j.aquatox.2003.12.00515003701 Search in Google Scholar

Jenkins, J.A., Rosen, M.R., Draugelis-Dale, R.O., Echols, K.R., Torres, L., Wieser, C.M., Kersten, C.A., Goodbred, S.L. (2018): Sperm quality biomarkers complement reproductive and endocrine parameters in investigating environmental contaminants in common carp (Cyprinus carpio) from the Lake Mead National recreation area. Environ Res 163: 149-164.10.1016/j.envres.2018.01.04129438900 Search in Google Scholar

Jimoh, R.O., Sogbanmu, T.O. (2021): Sublethal and environmentally relevant concentrations of triclosan and triclocarban induce histological, genotoxic, and embryotoxic effects in Clarias gariepinus (Burchell, 1822). Environ Sci Pollut Res Int. 28 (24): 31071-31083.10.1007/s11356-021-12820-1 Search in Google Scholar

Kim, J., Oh, H., Ryu, B., Kim, U., Lee, J.M., Jung, C.R., Kim, C.Y., Park, J.H. (2018): Triclosan affects axon formation in the neural development stages of zebrafish embryos (Danio rerio). Environ Pollut 236: 304-312.10.1016/j.envpol.2017.12.110 Search in Google Scholar

Kim, S.M., Yoo, J.A., Baek, J.M., Cho, K.H, (2015): Diethyl phthalate exposure is associated with embryonic toxicity, fatty liver changes, and hypolipidemia via impairment of lipoprotein functions. Toxicol In Vitro 30(1): 383-393.10.1016/j.tiv.2015.09.026 Search in Google Scholar

King, M. (1995): Fisheries biology assessment and management. Fishing News Books Blackwell Science Ltd., London, 341. Search in Google Scholar

Kumar, V., Chakraborty, A., Kural, M.R., Roy, P. (2009): Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan. Reprod Toxicol 27(2): 177-185.10.1016/j.reprotox.2008.12.002 Search in Google Scholar

Kyriazakis, I., Tolkamp, B.J., Hutchings, M.R. (1998): Towards a functional explanation for the occurrence of anorexia during parasitic infections. Anim Behav 56: 265-274.10.1006/anbe.1998.0761 Search in Google Scholar

Lan, Z., Kim, T.H., Bi, K.S., Chen, X.H., Kim, H.S. (2015): Triclosan exhibits a tendency to accumulate in the epididymis and shows sperm toxicity in male Sprague-Dawley rats. Environ Toxicol 30(1): 83-91.10.1002/tox.21897 Search in Google Scholar

Liang, X., Nie, X., Ying, G., An, T., Li, K. (2013): Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach. Chemosphere 90(3): 1281-1288.10.1016/j.chemosphere.2012.09.087 Search in Google Scholar

Liu, Y., Wang, L., Zhu, L., Ran, B., Wang, Z. (2020): Bisphenol A disturbs transcription of steroidogenic genes in ovary of rare minnow Gobiocypris rarus via the abnormal DNA and histone methylation. Chemosphere 240: 124935.10.1016/j.chemosphere.2019.124935 Search in Google Scholar

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951): Protein measurement with the Folin phenol reagent. J Biol Chem 193(1): 265-275.10.1016/S0021-9258(19)52451-6 Search in Google Scholar

Manju, M., Vijayasree, A.S., Akbarsha, M.A., Oommen, O.V, (2013): Effect of curcumin supplementation on hepatic, renal and intestinal organization of Anabas testudineus (Bloch): Light and electron microscopic studies. J Endocrinol Reprod 17(2): 83-98. Search in Google Scholar

Mihaich, E., Capdevielle, M., Urbach-Ross, D., Gallagher, S., Wolf, J. (2019): Medaka (Oryzias latipes) multigeneration test with triclosan. Environ Toxicol Chem 38(8): 1770-1783.10.1002/etc.445131017693 Search in Google Scholar

Miller, T.R., Heidler, J., Chillrud, S.N., DeLaquil, A., Ritchie, J.C., Mihalic, J.N., Bopp, R., Halden, R.U. (2008): Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments. Environ Sci Technol 42: 4570-4576.10.1021/es702882g248353818605588 Search in Google Scholar

Mills, L.J., Chichester, C. (2005): Review of evidence: are endocrine-disrupting chemicals in the aquatic environment impacting fish populations?. Sci Total Environ 343 (1-3): 1-34.10.1016/j.scitotenv.2004.12.07015862833 Search in Google Scholar

Mohapatra, S., Kumar, R., Patnaik, S.T., Mishra, C.S., Sahoo, L., Sundaray, J.K. (2020): Changes in ovary and testis and breeding fitness of the climbing perch, Anabas testudineus (Bloch, 1792), exposed to sub-lethal concentrations of monocrotophos. Aquac Res 51 (8): 3230-3236.10.1111/are.14657 Search in Google Scholar

Nag, S.K., Das Sarkar, S., Manna, S.K. (2018): Triclosan - an antibacterial compound in water, sediment and fish of River Gomti, India. Int J Environ Health Res 28 (5): 461-470.10.1080/09603123.2018.148704429925273 Search in Google Scholar

Nagahama, Y., Yamashita, M. (2008): Regulation of oocyte maturation in fish. Dev Growth Differ 50 (1): S195-S219.10.1111/j.1440-169X.2008.01019.x18482399 Search in Google Scholar

Nassef, M., Matsumoto, S., Seki, M., Khalil, F., Kang, I.J., Shimasaki, Y., Oshima, Y., Honjo, T. (2010): Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish (Oryzias latipes). Chemosphere 80: 1095-1100.10.1016/j.chemosphere.2010.04.07320537681 Search in Google Scholar

Navas, J.M., Segner, H. (2006): Vitellogenin synthesis in primary cultures of fish liver cells as endpoint for in vitro screening of the (anti)estrogenic activity of chemical substances. Aquat Toxicol 80 (1): 1-22.10.1016/j.aquatox.2006.07.01316950525 Search in Google Scholar

Oliveira, R., Domingues, I., Grisolia, C.K., Soares, A.M.V.M. (2009): Effects of triclosan on zebrafish early-life stages and adults. Environ Sci Pollut Res 16: 679-688.10.1007/s11356-009-0119-319283420 Search in Google Scholar

Palenske, N.M., Nallani, G.C., Dzialowski, E.M. (2010): Physiological effects and bioconcentration of triclosan on amphibian larvae. Comp Biochem Physiol Part C: Toxicol Pharmacol 52: 232-240.10.1016/j.cbpc.2010.04.00920417311 Search in Google Scholar

Pandit, D.N., Gupta, M.L. (2019): Hepato-somatic index, gonado-somatic index and condition factor of Anabas testudineus as bio-monitoring tools of nickel and chromium toxicity. Int J Innov Sci Eng Technol 12 (3): 25-28. Search in Google Scholar

Park, Y., Gaddy, M.A., Alfhili, M.A., Lee, M.H. (2020): The teratogenic effect of triclosan on embryogenesis is attenuated by Tween 20 in Caenorhabditis elegans. MicroPubl Biol 2020. Search in Google Scholar

Priyanka, Trivedi, A., Maske, P., Mote, C., Dighe, V. (2020): Gestational and lactational exposure to triclosan causes impaired fertility of F1 male offspring and developmental defects in F2 generation. Environ Pollut 257: 113617.10.1016/j.envpol.2019.11361731780364 Search in Google Scholar

Priyatha, C.V., Chitra, K.C. (2018): Acute toxicity of triclosan on the native freshwater fish, Anabas testudineus (Bloch, 1792): Behavioral alterations and histopathological lesions. Int J Life Sci 6 (1): 166-172. Search in Google Scholar

Raibeemol, K.P., Chitra, K.C. (2018): Hematological and biochemical changes in the freshwater fish, Pseudetroplus maculatus exposed to sublethal concentrations of chlorpyrifos. Res Rev J Life Sci 8 (3): 108-116. Search in Google Scholar

Rajan, B., Fernandes, J.M., Caipang, C.M., Kiron, V., Rombout, J.H., Brinchmann, M.F. (2011): Proteome reference map of the skin mucus of Atlantic cod (Gadus morhua) revealing immune competent molecules. Fish Shellfish Immunol 31 (2): 224-231.10.1016/j.fsi.2011.05.00621609766 Search in Google Scholar

Ramaswamy, B.R., Shanmugam, G., Velu, G., Rengarajan, B., Larsson, D.G. (2011): GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J Hazard Mater 186 (2-3): 1586-1593.10.1016/j.jhazmat.2010.12.03721216531 Search in Google Scholar

Rasmussen, M.K., Ekstrand, B., Zamaratskaia, G. (2013): Regulation of 3β-hydroxysteroid dehydrogenase/Δ54 isomerase: A review. Int J Mol Sci 14 (9): 17926-17942.10.3390/ijms140917926379476024002028 Search in Google Scholar

Raut, S.A., Angus, R.A. (2010): Triclosan has endocrine-disrupting effects in male western mosquitofish, Gambusia affinis. Environ Toxicol Chem 29 (6): 1287-1291.10.1002/etc.15020821571 Search in Google Scholar

Revathy, V., Chitra, K.C. (2019): Di-isononyl phthalate (DINP) and di-(2-ethylhexyl)-phthalate (DEHP) disrupts endocrine functions in the freshwater fish, Oreochromis mossambicus (Peters, 1852). J Adv Sci Res 10 (1): 26-31.10.33997/j.afs.2018.31.04.004 Search in Google Scholar

Roberts, R.J., Smail, D.A. (2001): Laboratory methods In: Ronald J. Roberts, Fish pathology, 3rd Edn. Harcourt publishers limited, pp. 380-390. Search in Google Scholar

Sadekarpawar, S., Parikh, P. (2013): Gonadosomatic and hepatosomatic indices of freshwater fish Oreochromis mossambicus in response to a plant nutrient. World J Zool 8 (1): 110-118. Search in Google Scholar

Sajla, K., Raibeemol, K.P., Chitra, K.C. (2019): Induction of ovarian toxicity in the freshwater fish, Pseudetroplus maculatus (Bloch, 1795) after sublethal exposure of dibutyl phthalate. Int J Sci Res Biol Sci 6 (5): 26-38.10.26438/ijsrbs/v6i5.2638 Search in Google Scholar

Salinas, I., Zhang, Y.A., Sunyer, J.O. (2011): Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol 35 (12): 1346-1365.10.1016/j.dci.2011.11.009342814122133710 Search in Google Scholar

Sarkar, S.D., Nag, S.K., Kumari, K., Saha, K., Bandyopadhyay, S., Aftabuddin, M., Das, B.K. (2020): Occurrence and safety evaluation of antimicrobial compounds triclosan and triclocarban in water and fishes of the multitrophic niche of River Torsa, India. Arch Environ Contam Toxicol 79 (4): 488-499.10.1007/s00244-020-00785-033215293 Search in Google Scholar

Schnitzler, J.G., Frederich, B., Dussenne, M., Klaren, P.H., Silvestre, F., Das, K. (2016): Triclosan exposure results in alterations of thyroid hormone status and retarded early development and metamorphosis in Cyprinodon variegatus. Aquat Toxicol 181: 1-10.10.1016/j.aquatox.2016.10.01927810487 Search in Google Scholar

Serra, H., Brion, F., Porcher, J.M., Budzinski, H., Ait-Aissa, S. (2018): Triclosan lacks anti-estrogenic effects in zebrafish cells but modulates estrogen response in zebrafish embryos. Int J Mol Sci 19 (4): 1175.10.3390/ijms19041175597939929649157 Search in Google Scholar

Shanthanagouda, A.H., Khairnar, S.O. (2018): Breeding and spawning of fishes: Role of endocrine gland. Int J Fish Aquat Stud 6 (4): 472-478. Search in Google Scholar

Shi, J., Jiao, Z., Zheng, S., Li, M., Zhang, J., Feng, Y., Yin, J., Shao, B. (2015): Long-term effects of bisphenol AF (BPAF) on hormonal balance and genes of hypothalamus-pituitary-gonad axis and liver of zebrafish (Danio rerio), and the impact on offspring. Chemosphere 128: 252-257.10.1016/j.chemosphere.2015.01.06025723718 Search in Google Scholar

Shved, N., Berishvili, G., Baroiller, J.F., Segner, H., Reinecke, M. (2008): Environmentally relevant concentrations of 17α-ethinylestradiol (EE2) interfere with the growth hormone (GH)/ insulin-like growth factor (IGF)-I system in developing bony fish. Toxicol Sci 106 (1): 93-102.10.1093/toxsci/kfn150 Search in Google Scholar

Singh, A.P., Surendra, S., Prabhat, B., Khushbu, Y. (2010): Toxic effect of phorate on the serum biochemical parameters of snake headed fish Channa punctatus (Bloch). Adv Biores 1 (1): 177-181. Search in Google Scholar

Song, X., Wang, X., Bhandari, R.K. (2020): Developmental abnormalities and epigenetic alterations in medaka (Oryzias latipes) embryos induced by triclosan exposure. Chemosphere 261: 127613.10.1016/j.chemosphere.2020.127613 Search in Google Scholar

Sruthi, M., Raibeemol, K.P., Chitra, K.C. (2020): Involvement of dibutyl phthalate on male reproductive toxicity in the freshwater fish Pseudetroplus maculatus (Bloch, 1795). J Appl Aquac 1-25.10.1016/j.fsi.2020.04.005 Search in Google Scholar

Stenzel, A., Wirt, H., Patten, A., Theodore, B., King-Heiden, T. (2019): Larval exposure to environmentally relevant concentrations of triclosan impairs metamorphosis and reproductive fitness in zebrafish. Reprod Toxicol 87: 79-86.10.1016/j.reprotox.2019.05.055 Search in Google Scholar

Stoker, T.E., Gibson, E.K., Zorrilla, L.M. (2010): Triclosan exposure modulates estrogen-dependent responses in the female wistar rat. Toxicol Sci 117 (1): 45-53.10.1093/toxsci/kfq180 Search in Google Scholar

Sulistyo, I., Fontaine, P., Rincarh, J., Gardeur, J.N., Migaud, H., Capdeville, B., Kestemont, P. (2000): Reproductive cycle and plasma level of steroid in male Eurasian Perch (Perca fluviatilis). Aquat Living Resour 13: 99-106.10.1016/S0990-7440(00)00146-7 Search in Google Scholar

Sumi, N., Chitra, K.C. (2020): Possible role of C60 fullerene in the induction of reproductive toxicity in the freshwater fish, Anabas testudineus (Bloch, 1792). Environ Sci Pollut Res 1-13.10.1007/s11356-020-08509-632219653 Search in Google Scholar

Tache, Y., Martinez, V., Million, M., Wang, L. (2001): Stress and the gastrointestinal tract. III. Stress-related alterations of gut motor function: Role of brain corticotrophin-releasing factor receptors. Am J Physiol Gastrointest Liver Physiol 280 (2): G173-G177.10.1152/ajpgi.2001.280.2.G173 Search in Google Scholar

United States - Environmental Protection Agency (US-EPA) (2008): Re-registration eligibility decision for triclosan, List B. Case No. 2340. pp. 98. Search in Google Scholar

United States - Food and Drug Administration (US-FDA) (2016): 21 CFR part 310 safety and effectiveness of consumer antiseptics. Topical antimicrobial drug products for over-the-counter human use. Final rule. Fed. Regist. 81: 61106-61130. Search in Google Scholar

Varsamos, S., Nebel, C., Charmantier, G. (2005): Ontogeny of osmoregulation in postembryonic fish: A review. Comp Biochem Physiol A Mol Integr Physiol 141 (4): 401-429.10.1016/j.cbpb.2005.01.01316140237 Search in Google Scholar

Vasanth, S., Arul, G., Karthikeyeni, S., Kumar, T.S., Vignesh, V., Manimegalai, M., Bupesh, G., Thirumurugan, R., Subramanian, P. (2015): Influence of triazine herbicide exposure on guppies (Poecilia sphenops) aromatase activities, altered sex steroid concentration and vitellogenin induction. Indian J Pharm Sci 77 (2): 156-162.10.4103/0250-474X.156549 Search in Google Scholar

Vijayakumar, N., Amritha, K., Priyatha, C.V., Chitra, K.C. (2020): Sodium benzoate induced reproductive and metabolic changes in Anabas testudineus (Bloch, 1792). Res Rev J Life Sci. 10 (1): 56-71. Search in Google Scholar

Vijitha, C.K., Asifa, K.P., Chitra, K.C. (2017): Assessment of genotoxic and haematological consequence of triclosan in the fish, Oreochromis niloticus (Linnaeus, 1758). Int J Aquat Res 3 (2): 101-109. Search in Google Scholar

Wang, D., Wang, X., Huang, H., Wang, H. (2021): Triclosan regulates alternative splicing events of nerve-related genes through RNA-binding protein CELF2 to induce zebrafish neurotoxicity. J Hazard Mater 413: 125414.10.1016/j.jhazmat.2021.12541433621777 Search in Google Scholar

Wang, F., Guo, X., Chen, W., Sun, Y., Fan, C. (2017): Effects of triclosan on hormones and reproductive axis in female Yellow River carp (Cyprinus carpio): Potential mechanisms underlying estrogen effect. Toxicol Appl Pharmacol 336: 49-54.10.1016/j.taap.2017.10.00529032082 Search in Google Scholar

Wang, F., Liu, F., Chen, W., Xu, R., Wang, W. (2018): Effects of triclosan (TCS) on hormonal balance and genes of hypothalamus-pituitary- gonad axis of juvenile male Yellow River carp (Cyprinus carpio). Chemosphere 193: 695-701.10.1016/j.chemosphere.2017.11.08829175396 Search in Google Scholar

Wirt, H., Botka, R., Perez, K.E., King-Heiden, T. (2018): Embryonic exposure to environmentally relevant concentrations of triclosan impairs foraging efficiency in zebrafish larvae. Environ Toxicol Chem 37 (12): 3124-3133.10.1002/etc.4281 Search in Google Scholar

World Health Organization (2012): United nations environment programme (WHOUNEP). In: Bergman, A., Heindel, J.J., Jobling, S., Kidd, K.A., Zoeller, R.T. (Eds.), State of the science of endocrine disrupting chemicals. Search in Google Scholar

Wyrobek, A.J., Gordon, L.A., Burkhart, J.G., Francis, M.W., Kapp, R.W., Letz, G., Malling, H.V., Topham, J.C., Whorton, M.D. (1983): An evaluation of the mouse sperm morphology test and other sperm tests in nonhuman mammals. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 115 (1): 1-72.10.1016/0165-1110(83)90014-3 Search in Google Scholar

Zin, T., Than, A.A., Naing, T.T. (2011): Fecundity (F), gonadosomatic Index (GSI), hepatosomatic index (HSI), condition factor (K) and length weight relationship (LWR) in Channa orientalis Bloch and Schneide, 1801. Uni Res J 4 (2): 47-62. Search in Google Scholar

eISSN:
1848-0586
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Genetics, Biotechnology, Ecology, other