Open Access

Luteolin alleviates renal ischemia-reperfusion injury in streptozotocin induced diabetic rats by inhibiting metalloenzymes expression


Cite

Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. JASN. 2003;14:2199-210. Search in Google Scholar

Lejay A, Fang F, John R, Van JAD, Barr M, Thaveau F, et al. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. JMCC. 2016;91:11-22. Search in Google Scholar

Zhang Y, Hu F, Wen J, Wei X, Zeng Y, Sun Y, et al. Effects of sevoflurane on NF-кB and TNF-α expression in renal ischemia–reperfusion diabetic rats. IR. 2017;66(10):901-10. Search in Google Scholar

Chan KL. Role of Nitric Oxide in ischemia and reperfusion injury. Curr Med Chem Anti-Inflammatory & Anti-Allergy Agents. 2002;1;1-13. Search in Google Scholar

Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC. Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am J Physiol Renal Physiol. 2005;288:91-7. Search in Google Scholar

Gong DJ, Wang L, Yang YY, Zhang JJ, Liu XH. Diabetes aggravates renal ischemia and reperfusion injury in rats by exacerbating oxidative stress, inflammation, and apoptosis. Ren Fail. 2019;41(1): 750-61. Search in Google Scholar

Kunugi S, Shimizu A, Kuwahara N, Du X, Takahashi M, Terasaki Y, et al. Inhibition of matrix metalloproteinases reduces ischemiareperfusion acute kidney injury. Lab Invest. 2011;91(2):170-80. Search in Google Scholar

Za k iyanov O, Ka lousová M, Zima T, Tesař V. Matri x metalloproteinases in renal diseases: a critical appraisal. Kidney Blood Press Res. 2019;44:298-330. Search in Google Scholar

Mathalone N, Lahat N, Rahat MA, Bahar-Shany K, Oron Y, Geyer O. The involvement of matrix metalloproteinases 2 and 9 in rat retinal ischemia. Graefe’s Arch Clin Exp Ophthalmol. 2007;245(5):725-32. Search in Google Scholar

Muhs BE, Plitas G, Delgado Y, Ianus I, Shaw JP, Adelman MA, et al. Temporal expression and activation of matrix metalloproteinases-2, -9, and membrane type 1 – Matrix metalloproteinase following acute hindlimb ischemia. J Surg Res. 2003;111(1):8-15. Search in Google Scholar

Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A, Cowled PA. Up-regulation of MMP-2 and MMP-9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, doxycycline. Eur J Vasc Endovasc Surg. 2002;23(3):260-9. Search in Google Scholar

Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation. 2000;101(15):1833-9. Search in Google Scholar

Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JRB, Sawicki G, Schulz R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation. 2002;106(12):1543-9. Search in Google Scholar

Basile DP, Fredrich K, Weihrauch D, Hattan N, Chilian WM, Angiostatin WMC. Angiostatin and matrix metalloprotease expression following ischemic acute renal failure. J Physiol Renal Physiol. 2004;286:893-902. Search in Google Scholar

Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC. Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am J Physiol Renal Physiol. 2005;288:91-7. Search in Google Scholar

Melin J, Hellberg O, Larsson E, Zezina L, Fellström BC. Protective effect of insulin on ischemic renal injury in diabetes mellitus. Kidney Int. 2002;61(4):1383-92. Search in Google Scholar

Cheng S, Pollock AS, Mahimkar R, Olson JL, Lovett DH, Cheng S, et al. Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. FASEB J. 2006;20(11):1898-900. Search in Google Scholar

Dejonck heere E, Vandenbroucke R E, Libert C. Matri x metalloproteinases as drug targets in ischemia/reperfusion injury. Drug Discovery Today. 2011;16:762-78. Search in Google Scholar

Dong Y, Zhao H, Man J, Fu S, Yang L. MMP-9-mediated regulation of hypoxia-reperfusion injury-related neutrophil inflammation in an in vitro proximal tubular cell model. Ren Fail. 2021;43(1):900-10. Search in Google Scholar

Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H, et al. Histone deacetylase-2 is a key regulator of diabetes-and transforming growth factor-1-induced renal injury. Am J Physiol Renal Physiol. 2009;297:729-39. Search in Google Scholar

Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, et al. Histone deacetylase inhibition reduces myocardial ischemia‐ reperfusion injury in mice. FASEB J. 2008;22(10):3549-60. Search in Google Scholar

Fan J, Alsarraf O, Dahrouj M, Platt KA, Chou CJ, Rice DS, et al. Inhibition of HDAC2 protects the retina from ischemic injury. Invest Ophthalmol Vis Sci. 2013;54(6):4072-80. Search in Google Scholar

Aufhauser DD, Hernandez P, Concors SJ, O’Brien C, Wang Z, Murken DR, et al. HDAC2 targeting stabilizes the CoREST complex in renal tubular cells and protects against renal ischemia/reperfusion injury. Sci Rep. 2021;11(1). Search in Google Scholar

Cosentino CC, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, et al. Histone deacetylase inhibitor enhances recovery after AKI. JASN. 2013;24(6):943-53. Search in Google Scholar

Du Y, Tang G, Yuan W. Suppression of HDAC2 by sodium butyrate alleviates apoptosis of kidney cells in db/db mice and HG-induced NRK-52E cells. Int J Mol Med. 2020;45(1):210-22. Search in Google Scholar

Ma X, Wang Q. short-chain fatty acids attenuate renal fibrosis and enhance autophagy of renal tubular cells in diabetic mice through the HDAC2/ULK1 axis. Endocrinol Metab. 2022;37(3):432-43. Search in Google Scholar

Xiong C, Wu Q, Fang M, Li H, Chen B, Chi T. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats. J Int Med Res. 2020;48(4). Search in Google Scholar

Zhang M, He L, Liu J, Zhou L. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway. Expe Clin Endocrinol Diabetes. 2021;129(10):729-39. Search in Google Scholar

Wang GG, Lu XH, Li W, Zhao X, Zhang C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid Based Complement Alternat Med. 2011;2011:323171. Search in Google Scholar

Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 2018;225:342-58. Search in Google Scholar

Lv J, Zhou D, Wang Y, Sun W, Zhang C, Xu J, et al. Effects of luteolin on treatment of psoriasis by repressing HSP90. Int Immunopharmacol. 2020;79. Search in Google Scholar

López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009;9(1):31-59. Search in Google Scholar

Arslan BY, Arslan F, Erkalp K, Alagöl A, Sevdi MS, Yıldız G, et al. Luteolin ameliorates colistin-induced nephrotoxicity in the rat models. Ren Fail. 2016;38(10):1735-40. Search in Google Scholar

Domitrović R, Cvijanović O, Pugel EP, Zagorac GB, Mahmutefendić H, Škoda M. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney. Toxicology. 2013;310:115-23. Search in Google Scholar

Xin S bin, Yan H, Ma J, Sun Q, Shen L. Protective effects of luteolin on lipopolysaccharide-induced acute renal injury in mice. MSM. 2016;22:5173-80. Search in Google Scholar

Hong X, Zhao X, Wang G, Zhang Z, Pei H, Liu Z. Luteolin treatment protects against renal ischemia-reperfusion injury in rats. Mediators Inflamm. 2017;2017. Search in Google Scholar

Liu Y, Shi B, Li Y, Zhang H. Protective effect of luteolin against renal ischemia/reperfusion injury via modulation of pro-inflammatory cytokines, oxidative stress and apoptosis for possible benefit in kidney transplant. MSM. 2017;23:5720-7. Search in Google Scholar

Bonino B, Leoncini G, De Cosmo S, Greco E, Russo GT, Giandalia A, et al. Antihypertensive treatment in diabetic kidney disease: The need for a patient-centered approach. Medicina. 2019;55(7):382. Search in Google Scholar

El Mouhayyar C, Riachy R, Khalil AB, Eid A, Azar S. Inhibitors in diabetes and microvascular complications: A review. Int J Endocrinol. 2020;2020:1762164. Search in Google Scholar

Ozbilgin S, Ozkardesler S, Akan M, Boztas N, Ozbilgin M, Ergur BU, et al. Renal ischemia/reperfusion injury in diabetic rats: The role of local ischemic preconditioning. Biomed Res Int. 2016;2016:8580475. Search in Google Scholar

Chowdhury S, Ghosh S, Das AK, Sil PC. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front Pharmacol. 2019;10(FEB). Search in Google Scholar

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-8. Search in Google Scholar

Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem. 1983;132(2):345-52. Search in Google Scholar

Woessner JF. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93(2):440-7. Search in Google Scholar

Daude RB, Shah JS. Protective effect of alpha-cyperone in renal ischemia-reperfusion induced acute kidney injury by modulation of metalloenzyme expression. Eur Chem Bull. 2023;12:5629-43. Search in Google Scholar

Pourghasem M, Shafi H, Babazadeh Z, Zahra F. Histological changes of kidney in diabetic nephropathy Caspian. Caspian J Intern Med. 2015;6. Search in Google Scholar

de Ponte MC, Cardoso VG, Gonçalves GL, Costa-Pessoa JM, Oliveira-Souza M. Early type 1 diabetes aggravates renal ischemia/reperfusion-induced acute kidney injury. Sci Rep. 2021;11(1). Search in Google Scholar

Naylor RW, Morais MRPT, Lennon R. Complexities of the glomerular basement membrane. Nat Rev Nephrol. 2021;17:112-27. Search in Google Scholar

Ali MM, Mahmoud AM, Le Master E, Levitan I, Phillips SA. Role of matrix metalloproteinases and histone deacetylase in oxidative stress-induced degradation of the endothelial glycocalyx. Am J Physiol Heart Circ Physiol. 2019;316:647-63. Search in Google Scholar

Rosas-Martínez L, Rodríguez-Muñoz R, Namorado-Tonix M del C, Missirlis F, del Valle-Mondragón L, Sánchez-Mendoza A, et al. Hyperglycemic levels in early stage of diabetic nephropathy affect differentially renal expression of claudins-2 and -5 by oxidative stress. Life Sci. 2021;268. Search in Google Scholar

Ramnath RD, Butler MJ, Newman G, Desideri S, Russell A, Lay AC, et al. Blocking matrix metalloproteinase-mediated syndecan-4 shedding restores the endothelial glycocalyx and glomerular filtration barrier function in early diabetic kidney disease. Kidney Int. 2020;97(5):951-65. Search in Google Scholar

Kumar Bhatt L, Addepalli V. Minocycline with aspirin: An approach to attenuate diabetic nephropathy in rats. Ren Fail. 2011;33(1):72-8. Search in Google Scholar

Tong Y, Liu S, Gong R, Zhong L, Duan X, Zhu Y. Ethyl vanillin protects against Kidney injury in diabetic nephropathy by inhibiting oxidative stress and apoptosis. Oxid Med Cell Longev. 2019;2019. Search in Google Scholar

Zang Y, Igarashi K, Li YL. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-Ay mice. Biosci Biotechnol Biochem. 2016;80(8):1580-6. Search in Google Scholar

Zhang Y, Tian XQ, Song XX, Ge JP, Xu YC. Luteolin protect against diabetic cardiomyopathy in rat model via regulating the AKT/GSK-3β signalling pathway. Biomed Res. 2017;28(3). Search in Google Scholar

Shen SC, He F, Cheng C, Xu BL, Sheng JL. Uric acid aggravates myocardial ischemia –reperfusion injury via ROS/NLRP3 pyroptosis pathway. Biomed Pharmacother. 2021;133:110990. Search in Google Scholar

Jalal DI, Maahs DM, Hovind P, Nakagawa T. Uric acid as a mediator of diabetic nephropathy. Semin Nephrol. 2011;31(5):459-65. Search in Google Scholar

Hovind P, Rossing P, Tarnow L, Johnson RJ, Parving HH. Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: An inception cohort study. Diabetes. 2009;58(7):1668-71. Search in Google Scholar

Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 2013;83:1029-41. Search in Google Scholar

Kalbolandi SM, Gorji AV, Babaahmadi-Rezaei H, Mansouri E. Luteolin confers renoprotection against ischemia – reperfusion injury via involving Nrf2 pathway and regulating miR320. Mol Biol Rep. 2019;46(4):4039-47. Search in Google Scholar

eISSN:
2300-6676
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy