Cite

Baumann MH, Ayestas MA, Jr., Partilla JS, Sink JR, Shulgin AT, Daley PF, et al. The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacol. 2012;37:1192-203. Search in Google Scholar

Lopez-Arnau R, Martinez-Clemente J, Pubill D, Escubedo E, Camarasa J. Comparative neuropharmacology of three psychostimulant cathinone derivatives: butylone, mephedrone and methylone. Br J Pharmacol. 2012;167:407-20. Search in Google Scholar

Martinez-Clemente J, Escubedo E, Pubill D, Camarasa J. Interaction of mephedrone with dopamine and serotonin targets in rats. Eur Neuropsychopharmacol. 2012;22:231-6. Search in Google Scholar

Nagai F, Nonaka R, Satoh Hisashi KK. The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol. 2007;559:132-7. Search in Google Scholar

Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, et al. Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. Br J Pharmacol. 2011;164:1949-58. Search in Google Scholar

Hadlock GC, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC, et al. 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther. 2011; 339:530-6. Search in Google Scholar

Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A. Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol. 2013;85:1803-15. Search in Google Scholar

Angoa-Perez M, Kane MJ, Francescutti DM, Sykes KE, Shah MM, Mohammed AM, et al. Mephedrone, an abused psychoactive component of ‘bath salts’ and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J Neurochem. 2012;120:1097-107. Search in Google Scholar

Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, et al. Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol. 2013;168:458-70. Search in Google Scholar

Papaseit E, Moltó J, Muga R, Torrens M, de la Torre R, Farré M. Clinical pharmacology of the synthetic cathinone mephedrone. Curr Top Behav Neurosci. 2017;32:313-31. Search in Google Scholar

Lisek R, Xu W, Yuvasheva E, Chiu YT, Reitz AB, Liu-Chen LY, et al. Mephedrone (‘bath salt’) elicits conditioned place preference and dopamine-sensitive motor activation. Drug Alcohol Depend. 2012;126:257-62. Search in Google Scholar

Motbey CP, Hunt GE, Bowen MT, Artiss S, McGregor IS. Mephedrone (4-methylmethcathinone, ‘meow’): acute behavioural effects and distribution of Fos expression in adolescent rats. Addict Biol. 2012;17:409-22. Search in Google Scholar

Shortall SE, Spicer CH, Ebling FJ, Green AR, Fone KC, King MV. Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone. Addict Biol. 2016;21:1127-39. Search in Google Scholar

Gregg RA, Tallarida CS, Reitz A, McCurdy C, Rawls SM. Mephedrone (4-methylmethcathinone), a principal constituent of psychoactive bath salts, produces behavioral sensitization in rats. Drug Alcohol Depend. 2013;133:746-50. Search in Google Scholar

Gregg RA, Baumann MH, Partilla JS, Bonano JS, Vouga A, Tallarida CS, et al. Stereochemistry of mephedrone neuropharmacology: enantiomer-specific behavioural and neurochemical effects in rats. Br J Pharmacol. 2015;172:883-94. Search in Google Scholar

Calabrese EJ. Addiction and dose response: the psychomotor stimulant theory of addiction reveals that hormetic dose responses are dominant. Crit Rev Toxicol. 2008;38:599-617. Search in Google Scholar

Ball K, Slane M. Tolerance to the locomotor-activating effects of 3,4-methylenedioxymethamphetamine (MDMA) predicts escalation of MDMA self-administration and cue-induced reinstatement of MDMA seeking in rats. Behav Brain Res. 2014, 274:143-8. Search in Google Scholar

Jones K, Brennan KA, Colussi-Mas J, Schenk S. Tolerance to 3,4-methylenedioxymethamphetamine is associated with impaired serotonin release. Addict Biol. 2010;15:289-98. Search in Google Scholar

Torres Valladares D, Kudumala S, Hossain M, Carvelli L. Caenorhabditis elegans as an in vivo model to assess amphetamine tolerance. Brain Behav Evol. 2021. Search in Google Scholar

Siciliano CA, Saha K, Calipari ES, Fordahl SC, Chen R, Khoshbouei H, Jones SR. Amphetamine reverses escalated cocaine intake via restoration of dopamine transporter conformation. J Neurosci. 2018;38:484-97. Search in Google Scholar

Wabe NS. Chemistry, pharmacology, and toxicology of khat (catha edulis forsk): a review. Addict Health. 2011;3:137-49. Search in Google Scholar

Goldsmith R, Pachhain S, Choudhury SR, Phuntumart V, Larsen R, Sprague JE. Gender differences in tolerance to the hyperthermia mediated by the synthetic cathinone methylone. Temperature (Austin). 2019;6:334-40. Search in Google Scholar

Atehortua-Martinez LA, Masniere C, Campolongo P, Chasseigneaux S, Callebert J, Zwergel C, et al. Acute and chronic neurobehavioral effects of the designer drug and bath salt constituent 3,4-methylenedioxypyrovalerone in the rat. J Psychopharmacol. 2019;33:392-405. Search in Google Scholar

Schechter MD. Dopaminergic nature of acute cathine tolerance. Pharmacol Biochem Behav. 1990;36:817-20. Search in Google Scholar

Lopez-Arnau R, Martinez-Clemente J, Rodrigo T, Pubill D, Camarasa J, Escubedo E. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone. Toxicol Appl Pharmacol. 2015;286:27-35. Search in Google Scholar

Suyama JA, Banks ML, Negus SS. Effects of repeated treatment with methcathinone, mephedrone, and fenfluramine on intracranial self-stimulation in rats. Psychopharmacology (Berl). 2019;236:1057-66. Search in Google Scholar

Winstock A, Mitcheson L, Ramsey J, Davies S, Puchnarewicz M, Marsden J. Mephedrone: use, subjective effects and health risks. Addiction. 2011;106:1991-6. Search in Google Scholar

Rácz J, Csák R, Faragó R, Vadász V. The phenomenon of drug change in the interviews with injecting drug users. Psychiatr Hung. 2012;27:29-47. Search in Google Scholar

Nencini P, Johanson CE, Schuster CR. Sensitization to kappa opioid mechanisms associated with tolerance to the anorectic effects of cathinone. J Pharmacol Exp Ther. 1988;245:147-54. Search in Google Scholar

Bruckdorfer R. The basics about nitric oxide. Mol Aspects Med. 2005;26:3-31. Search in Google Scholar

Kourosh-Arami M, Hosseini N, Mohsenzadegan M, Komaki A, Joghataei MT. Neurophysiologic implications of neuronal nitric oxide synthase. Rev Neurosci. 2020;31:617-36. Search in Google Scholar

Talarek S, Listos J, Fidecka S. Role of nitric oxide in the development of tolerance to diazepam-induced motor impairment in mice. Pharmacol Rep. 2008;60:475-82. Search in Google Scholar

Talarek S, Listos J, Orzelska-Gorka J, Jakobczuk M, Kotlinska J, Biala G. The Importance of L-Arginine:NO:cGMP pathway in tolerance to Flunitrazepam in mice. Neurotox Res. 2017;31:309-16. Search in Google Scholar

Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Alboghobeish S, Amirgholami N, Houshmand G, et al. Venlafaxine prevents morphine antinociceptive tolerance: The role of neuroinflammation and the l-arginine-nitric oxide pathway. Exp Neurol. 2017;303:134-41. Search in Google Scholar

Ozdemir E, Bagcivan I, Durmus N, Altun A, Gursoy S. The nitric oxide-cGMP signaling pathway plays a significant role in tolerance to the analgesic effect of morphine. Can J Physiol Pharmacol. 2011;89:89-95. Search in Google Scholar

Talarek S, Listos J, Orzelska-Gorka J, Serefko A, Kotlinska J. NMDA Receptors and NO:cGMP Signaling Pathway Mediate the Diazepam-Induced Sensitization to Withdrawal Signs in Mice. Neurotox Res. 2018;33:422-32. Search in Google Scholar

Shortall SE, Macerola AE, Swaby RT, Jayson R, Korsah C, Pillidge KE, et al. Behavioural and neurochemical comparison of chronic intermittent cathinone, mephedrone and MDMA administration to the rat. Eur Neuropsychopharmacol. 2013;23:1085-95. Search in Google Scholar

Nguyen JD, Aarde SM, Cole M, Vandewater SA, Grant Y, Taffe MA. Locomotor Stimulant and Rewarding Effects of Inhaling Methamphetamine, MDPV, and Mephedrone via Electronic Cigarette-Type Technology. Neuropsychopharmacol. 2016;41:2759-71. Search in Google Scholar

Peper A. A theory of drug tolerance and dependence I: a conceptual analysis. J Theor Biol. 2004;229:477-90. Search in Google Scholar

Pantano F, Tittarelli R, Mannocchi G, Pacifici R, di LA, Busardo FP, et al. Neurotoxicity Induced by Mephedrone: An up-to-date Review. Curr Neuropharmacol. 2017;15:738-49. Search in Google Scholar

Martinez-Clemente J, Lopez-Arnau R, Abad S, Pubill D, Escubedo E, Camarasa J. Dose and time-dependent selective neurotoxicity induced by mephedrone in mice. PLoS One. 2014;9:e99002. Search in Google Scholar

Trabace L, Kendrick KM. Nitric oxide can differentially modulate striatal neurotransmitter concentrations via soluble guanylate cyclase and peroxynitrite formation. J Neurochem. 2000;75:1664-74. Search in Google Scholar

Celik T, Zagli U, Kayir H, Uzbay IT. Nitric oxide synthase inhibition blocks amphetamine-induced locomotor activity in mice. Drug Alcohol Depend. 1999;56:109-13. Search in Google Scholar

Abekawa T, Ohmori T, Koyama T. Effect of NO synthase inhibition on behavioral changes induced by a single administration of methamphetamine. Brain Res. 1994;666:147-50. Search in Google Scholar

Kim HS, Park WK. Nitric oxide mediation of cocaine-induced dopaminergic behaviors: ambulation-accelerating activity, reverse tolerance and conditioned place preference in mice. J Pharmacol Exp Ther. 1995;275:551-7. Search in Google Scholar

Itzhak Y, Martin JL. Effect of the neuronal nitric oxide synthase inhibitor 7-nitroindazole on methylphenidate-induced hyperlocomotion in mice. Behav Pharmacol. 2002;13:81-6. Search in Google Scholar

Salter M. Determination of the flux control coefficient of nitric oxide synthase for nitric oxide synthesis in discrete brain regions in vivo. J Theor Biol. 1996;182:449-52. Search in Google Scholar

Uzbay IT, Oglesby MW. Nitric oxide and substance dependence. Neurosci Biobehav Rev. 2001;25:43-52. Search in Google Scholar

Heinzen EL, Pollack GM. Pharmacodynamics of morphine-induced neuronal nitric oxide production and antinociceptive tolerance development. Brain Res. 2004;1023:175-84. Search in Google Scholar

eISSN:
2300-6676
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy