Open Access

Effects of linagliptin on morphine dependence in larval zebrafish (Danio rerio)


Cite

1. Spanagel R, Almeida OF, Shippenberg TS. Long lasting changes in morphine-induced mesolimbic dopamine release after chronic morphine exposure. Synapse. 1993;14(3):243-5.10.1002/syn.890140307 Search in Google Scholar

2. Koob GF, Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A, et al. Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev. 2004;27(8):739-49.10.1016/j.neubiorev.2003.11.007 Search in Google Scholar

3. Motahari AA, Sahraei H, Meftahi GH. Role of nitric oxide on dopamine release and morphine-dependency. Basic Clin Neurosci. 2016;7(4):283-90. Search in Google Scholar

4. Mocelin R, Marcon M, da Rosa Araujo AS, Herrmann AP, Piato A. Withdrawal effects following repeated ethanol exposure are prevented by N-acetylcysteine in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry. 2019;93:161-70.10.1016/j.pnpbp.2019.03.014 Search in Google Scholar

5. López-Patiño MA, Yu L, Cabral H, Zhdanova IV. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav. 2008; 93(1-2): 160-71.10.1016/j.physbeh.2007.08.013 Search in Google Scholar

6. Novak U, Wilks A, Buell G, McEwen S. Identical mRNA for preproglucagon in pancreas and gut. Eur J Biochem. 1987;164(3): 553-8.10.1111/j.1432-1033.1987.tb11162.x Search in Google Scholar

7. Donnelly D. The structure and function of the glucagon-like peptide-1 receptor and its ligands. Br J Pharmacol. 2012;166(1):27-41.10.1111/j.1476-5381.2011.01687.x Search in Google Scholar

8. Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5:262-9.10.1038/nrendo.2009.48 Search in Google Scholar

9. Baggio LL, Yusta B, Mulvihill EE, Cao X, Streutker CJ, Butany J, et al. GLP-1 Receptor expression within the human heart. Endocrinology. 2018;159(4):1570-84.10.1210/en.2018-00004 Search in Google Scholar

10. Körner M, Stöckli M, Waser B, Reubi JC. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med. 2007;48(5):736-43.10.2967/jnumed.106.038679 Search in Google Scholar

11. Lankat-Buttgereit B, Goke R, Fehmann HC, Richter G, Goke B. Molecular cloning of a cDNA encoding for the GLP-1 receptor expressed in rat lung. Exp Clin Endocrinol. 1994;102:341-7.10.1055/s-0029-1211301 Search in Google Scholar

12. Wei Y, Mojsov S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 1995;358(3):219-24.10.1016/0014-5793(94)01430-9 Search in Google Scholar

13. Egecioglu E, Engel JA, Jerlhag E. The glucagon-like peptide 1 analogue, exendin-4, attenuates the rewarding properties of psychostimulant drugs in mice. PLoS One. 2013;8(7):e69010.10.1371/journal.pone.0069010 Search in Google Scholar

14. Sørensen G, Reddy IA, Weikop P, Graham DL, Stanwood GD, Wortwein G, et al. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice. Physiol Behav. 2015;149:262-8.10.1016/j.physbeh.2015.06.013 Search in Google Scholar

15. Egecioglu E, Engel JA, Jerlhag E. The glucagon-like peptide 1 analogue Exendin-4 attenuates the nicotine-induced locomotor stimulation, accumbal dopamine release, conditioned place preference as well as the expression of locomotor sensitization in mice. PLoS One. 2013b;8(10):e77284.10.1371/journal.pone.0077284 Search in Google Scholar

16. Tuesta LM, Chen Z, Duncan A, Fowler CD, Ishikawa M, Lee BR, et al. GLP-1 acts on habenular avoidance circuits to control nicotine intake. Nat Neurosci. 2017;20(5):708-16.10.1038/nn.4540 Search in Google Scholar

17. Shirazi RH, Dickson SL, Skibicka KP. Gut peptide GLP-1 and its analogue, Exendin-4, decrease alcohol intake and reward. PLoS One. 2013;8(4):e61965.10.1371/journal.pone.0061965 Search in Google Scholar

18. Sørensen, G, Caine SB, Thomsen M. Effects of the GLP-1 agonist Exendin-4 on intravenous ethanol self-administration in mice. Alcohol Clin Exp Res. 2016;40(10):2247-52.10.1111/acer.13199 Search in Google Scholar

19. Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology. 2012;153(2):647-58.10.1210/en.2011-1443 Search in Google Scholar

20. Oren DA, Wei Y, Skrabanek L, Chow BK, Mommsen T, Mojsov S. Structural mapping and functional characterization of zebrafish class B G-Protein Coupled Receptor (GPCR) with dual ligand selectivity towards GLP-1 and glucagon. PLoS One. 2016;11(12):e0167718.10.1371/journal.pone.0167718 Search in Google Scholar

21. Topkara B, Yananli HR, Sakallı E, Demirkapu MJ. Effects of injection of gamma-aminobutyric acid agonists into the nucleus accumbens on naloxone-induced morphine withdrawal. Pharmacology. 2017; 100(3-4):131-8.10.1159/000477548 Search in Google Scholar

22. Cachat J, Canavello P, Elegante M, Bartels B, Hart P, Bergner C, et al. Modeling withdrawal syndrome in zebrafish. Behav Brain Res. 2010; 208(2):371-6.10.1016/j.bbr.2009.12.004 Search in Google Scholar

23. Khor BS, Jamil MF, Adenan MI, Shu-Chien AC. Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish. PLoS One. 2011;6(12):e28340.10.1371/journal.pone.0028340 Search in Google Scholar

24. Bao W, Volgin AD, Alpyshov ET, Friend AJ, Strekalova TV, de Abreu MS, et al. Opioid neurobiology, neurogenetics and neuropharmacology in zebrafish. Neurosci. 2019;404:218-32.10.1016/j.neuroscience.2019.01.045 Search in Google Scholar

25. Ninkovic J, Bally-Cuif L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods. 2006;39:262-74.10.1016/j.ymeth.2005.12.007 Search in Google Scholar

26. Bardo MT, Rowlett JK, Harris MJ. Conditioned place preference using opiate and stimulant drugs: a meta-analysis. Neurosci Biobehav Rev. 1995;19:39-51.10.1016/0149-7634(94)00021-R Search in Google Scholar

27. Bretaud S, Li Q, Lockwood BL, Kobayashi K, Lin E, Guo S. A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neurosci. 2007;146(3):1109-16.10.1016/j.neuroscience.2006.12.07317428610 Search in Google Scholar

28. Webb KJ, Norton WH, Trümbach D, Meijer AH, Ninkovic J, Topp S, Heck D, et al. Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biol. 2009;10(7):R81.10.1186/gb-2009-10-7-r81 Search in Google Scholar

29. Darland T, Dowling JE. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci U S A. 2001;98:11691-6.10.1073/pnas.1913806985879111553778 Search in Google Scholar

30. Braida D, Limonta V, Pegorini S, Zani A, Guerini-Rocco C, Gori E. Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacol. 2007;190:441-8.10.1007/s00213-006-0639-1 Search in Google Scholar

31. Rink E, Wullimann MF. Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Brain Res. 2002;137:89-100.10.1016/S0165-3806(02)00354-1 Search in Google Scholar

32. Bertelli PR, Mocelin R, Marcon M, Sachett A, Gomez R, Rosa AR, et al. Anti-stress effects of the glucagon-like peptide-1 receptor agonist liraglutide in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110388.10.1016/j.pnpbp.2021.110388 Search in Google Scholar

33. Douton JE, Augusto C, Stoltzfus B, Carkaci-Salli N, Vrana KE, Grigson PS. Glucagon-like peptide-1 receptor agonist, exendin-4, reduces reinstatement of heroin-seeking behavior in rats. Behav Pharmacol. 2021;32(4):265-77.10.1097/FBP.0000000000000609 Search in Google Scholar

34. Zhang Y, Kahng MW, Elkind JA, Weir VR, Hernandez NS, Stein LM, et al. Activation of GLP-1 receptors attenuates oxycodone taking and seeking without compromising the antinociceptive effects of oxycodone in rats. Neuropsychopharmacol. 2020;45(3):451-61.10.1038/s41386-019-0531-4 Search in Google Scholar

35. Pierce-Messick Z, Pratt WE. Glucagon-like peptide-1 receptors modulate the binge-like feeding induced by -opioid receptor stimulation of the nucleus accumbens in the rat. Neuroreport. 2020;31(18):1283-8.10.1097/WNR.0000000000001545 Search in Google Scholar

36. Merchenthaler I, Lane M, Shughrue P. Distribution of pre-proglucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol. 1999;403(2):261-80.10.1002/(SICI)1096-9861(19990111)403:2<261::AID-CNE8>3.0.CO;2-5 Search in Google Scholar

eISSN:
2300-6676
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy