Open Access

Investigation of excipients influence on rheological behaviour of hydrogels with dimethindene maleate and dexpanthenol: conditions of controlled shear rate


Cite

1. Medicines. Pharmaceutical development (ICH Q8) Kyiv; 2011. ST-N MoHU 42-3.0:2011. Search in Google Scholar

2. Baudonnet L, Pere D, Michaud P, Grossiord L, Rodriguez F. Effect of dispersion stirring speed on the particle size distribution and rheological properties of carbomer dispersions and gels. J Dispers Sci Technol. 2002;23(4):499-510.10.1081/DIS-120014018 Search in Google Scholar

3. Mazger TG. The Rheology Handbook: For users of rotational and oscillatory rheometers. 2 nd revised ed. Hannover:Vincentz Network; 2006:298. Search in Google Scholar

4. Eschler D, Klein P. An evidence-based review of the efficacy of topical antihistamines in the relief of pruritus. J Drugs Dermatol. 2010;9(8):992-7. Search in Google Scholar

5. Proksch E, de Bony R, Trapp S, Boudon S. Topical use of dexpanthenol: a 70th anniversary article. J Dermatol Treat. 2017;28(8):766-73.10.1080/09546634.2017.132531028503966 Search in Google Scholar

6. Guideline “Medicines. Bioequivalence study”. State Enterprise “State Expert Center of the Ministry of Health of Ukraine”. ST-N MoHU 42-7.2:2018. [Internet]. [cited 2021 Jan 05]. Available from: https://zakon.rada.gov.ua/rada/show/v0022282-17/stru Search in Google Scholar

7. Ministry of Health of Ukraine (n.d.). State Register of Medicines of Ukraine. Available from: http://www.drlz.kiev.ua [cited 2021 Jan 20]. Search in Google Scholar

8. Baek J, Lim J, Kang J, Shin S, Jung S, Cho C. Enhanced transdermal drug delivery of zaltoprofen using a novel formulation. Int J Pharm. 2013;453(2):358-62.10.1016/j.ijpharm.2013.05.05923747435 Search in Google Scholar

9. Hamed R, AbuRezeq A, Tarawneh O. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Dev Ind Pharm. 2018;44(9):1488-97.10.1080/03639045.2018.146402129669437 Search in Google Scholar

10. Carvalho F, Calixto G, Hatakeyama I, Luz GM, Gremiao M, Chorilli M.. Rheological, mechanical, and bioadhesive behavior of hydrogels to optimize skin delivery systems. Drug Dev Ind Pharm. 2013;39(11):1750-7.10.3109/03639045.2012.73451023216218 Search in Google Scholar

11. Sandolo C, Coviello T, Matricardi P, Alhaique F. Characterization of polysaccharide hydrogels for modified drug delivery. Eur Bioph J Biophy. 2007;36(7):693-700.10.1007/s00249-007-0158-y17429620 Search in Google Scholar

12. Anurova MN, Bakhrushina EO, Demina NB. A review of modern gel-forming agents in technology of dosage Forms. Khimiko-farmatsevticheskii zhurnal. 2015;49(9):39-46. Search in Google Scholar

13. Sosnik A, Seremeta KP. Polymeric hydrogels as technology platform for Drug Delivery Applications. Gels. 2017;3(3).10.3390/gels3030025631867530920522 Search in Google Scholar

14. Stokes J, Frith W. Rheology of gelling and yielding soft matter systems. Soft Matter. 2008;4(6):1133-40.10.1039/b719677f32907251 Search in Google Scholar

15. Pisal P, Patil S, Pokharkar V. Rheological investigation and its correlation with permeability coefficient of drug loaded carbopol gel: influence of absorption enhancers. Drug Dev Ind Pharm. 2013;39(4):593-9.10.3109/03639045.2012.69237722663597 Search in Google Scholar

16. Cintra G, Pinto L, Calixto G, Soares C, Von Zuben E, Scarpa M, et al. Bioadhesive surfactant systems for Methotrexate skin delivery. Molecules. 2016;21(2).10.3390/molecules21020231627354426901183 Search in Google Scholar

17. Sheskey PJ, Cook WG, Cable CG. Handbook of Pharmaceutical Excipients. 8th ed. London: American Pharmacists Association, Pharmaceutical Press; 2017:1216. Search in Google Scholar

18. Dinkgreve M, Fazilati M, Denn M, Bonn D. Carbopol: From a simple to a thixotropic yield stress. J Rheol. 2018;62(3):773-80.10.1122/1.5016034 Search in Google Scholar

19. Kukhtenko H, Gladukh I, Kukhtenko O, Soldatov D. Influence of excipients on the structural and mechanical properties of semisolid dosage forms. AJP. 2017;11(3):575-8. Search in Google Scholar

20. Lilienblum W, Bernauer U, Bodin L, Celleno L, Chaudhry Q, Coenraads P, et al. Opinion of the Scientific Committee on Consumer Safety (SCCS) – Final version of the opinion on Phenoxyethanol in cosmetic products. Regulato Toxicol Pharmacol. 2016;82:156.10.1016/j.yrtph.2016.11.007 Search in Google Scholar

21. Lyapunov AN, Bezuglaya EP, Lyapunov NA, Kirilyuk IA. Studies of carbomer gels using rotational viscometry and spin probes. Pharm Chem J. 2015;49(9):639-44.10.1007/s11094-015-1344-3 Search in Google Scholar

22. Islam M, Rodriguez-Hornedo N, Ciotti S, Ackermann C. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm Res. 2004;21(7):1192-9.10.1023/B:PHAM.0000033006.11619.07 Search in Google Scholar

23. Mallia V, Weiss R. Correlations between thixotropic and structural properties of molecular gels with crystalline networks. Soft Matter. 2016;12(16):3665-76.10.1039/C6SM00377J Search in Google Scholar

24. Malkin AYa, Isaev AI. Rheology: concepts, methods, applications. trans. from Eng. St. Petersburg: Profession; 2007:560. Search in Google Scholar

25. Ong E, O’Byrne S, Liow J. Yield stress measurement of a thixotropic colloid. Rheologica Acta. 2019;58(6-7):383-401.10.1007/s00397-019-01154-y Search in Google Scholar

26. Mendes P, Thompson R. A unified approach to model elastoviscoplastic thixotropic yield-stress materials and apparent yield-stress fluids. Rheologica Acta. 2013;52(7):673-94.10.1007/s00397-013-0699-1 Search in Google Scholar

27. Bautista F, de Santos J, Puig J, Manero O. Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model. J Newtonian Fluid Mech. 1999;80(2-3):93-11310.1016/S0377-0257(98)00081-0 Search in Google Scholar

28. Buitenhuis J, Ponitsch M. Negative thixotropy of polymer solutions. 1. A model explaining time-dependent viscosity. Colloid and Polymer Science. 2003;281(3):253-9.10.1007/s00396-002-0768-y Search in Google Scholar

29. Buitenhuis J, Springer J. Negative thixotropy of polymer solutions. 2. A systematic study of the time-dependent viscosity of partially hydrolyzed polyacrylamide. Colloid Polymer Sci. 2003;281(3):260-6.10.1007/s00396-002-0769-x Search in Google Scholar

30. Masalova I, Taylor M, Kharatiyan E, Malkin AY. Rheopexy in highly concentrated emulsions. J Rheol. 2005;49(4):839-49.10.1122/1.1940641 Search in Google Scholar

31. Postoy V, Kukhtenko H, Vyshnevska L, Gladukh I, Semchenko K. Study of rheological behaviour of hydroxyethyl cellulose gels in the development of the composition and technology of the medicine with anti-inflammatory activity. Pharmacia. 2019;66(4):187-92.10.3897/pharmacia.66.e37267 Search in Google Scholar

32. Gladukh I, Grubnik I, Kukhtenko H. Structural-mechanical studies of phytogel “Zhivitan”. JPSR. 2017;9(9):1672-76. Search in Google Scholar

eISSN:
2300-6676
ISSN:
2084-980X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy