1. bookVolume 17 (2021): Issue 2 (December 2021)
Journal Details
License
Format
Journal
eISSN
2199-6512
First Published
30 May 2014
Publication timeframe
2 times per year
Languages
English
Open Access

Analysis of Geogrid Reinforced Structures with a Passive Facing System Using Different Computational Methods

Published Online: 09 Dec 2021
Volume & Issue: Volume 17 (2021) - Issue 2 (December 2021)
Page range: 500 - 512
Journal Details
License
Format
Journal
eISSN
2199-6512
First Published
30 May 2014
Publication timeframe
2 times per year
Languages
English

[1] ALLEN, T. M. - BARTHUS, R. J.: Design and Performance of 6.3 m High, Block-Faced Geogrid Wall Designed Using K-Stiffness Method. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, Iss. 2, 2014, p. 12, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001013.10.1061/(ASCE)GT.1943-5606.0001013 Search in Google Scholar

[2] DOLINAJOVA, K. - SNAHNICAN, J.: Geogrid and Double Twist Steel Mesh Reinforced Soil Walls Subjected to High Loads in a Seismic Area. Proceedings of the 12th Slovak Geotechnical Conference: 55 Years of Geotechnical Engineering in Slovakia, 1st-2nd June, 2015, Bratislava, Slovakia, 2015, pp. 79–87. Search in Google Scholar

[3] SCOTLAND, I. - DIXON, N. - FROST, M. - WACKROW, R. - FOWMES, G. - HORGAN, G.: Measuring Deformation Performance of Geogrid Reinforced Structures Using a Terrestrial Laser Scanner. Proceedings of 10th International Conference of Geosynthetics, September 2014, Berlin, Germany, 2014, p. 8, https://www.researchgate.net/publication/286860094_Measuring_deformation_performance_of_geogrid_reinforced_structures_using_a_terrestrial_laser_scanner. Search in Google Scholar

[4] SILBER-HASSLACHER, T. - SNAHNICAN, J.: Active and Passive Facing Systems for Reinforced Soil Structures. 13th Geosynthetics Annual Conference 2019, 7-8. February, 2019, Zilina, Slovakia, 2019, p. 9, http://www.geosoul.sk/wp-content/uploads/2019/02/GEOSYNTETIKA2019_ACTIVE-AND-PASSIVE-FACING-SYSTEMS-FOR-REINFORCED-SOIL-STRUCTURES.pdf. Search in Google Scholar

[5] BUSSERT, F. - CAVANAUGH, J.: Recent Research and Future Implications of the Actual Behaviour of Geogrids in Reinforced Soil. Proceedings of Earth Retention Conference 3, August 2010, Washington, USA, 2010, pp. 460–477, https://doi.org/10.1061/41128(384)46.10.1061/41128(384)46 Search in Google Scholar

[6] BARNES, G.E.: Soil Mechanics: Principles and Practice. 3rd edition, London: Palgrave, UK, 2010, p. 560. Search in Google Scholar

[7] ALLEN, T. M. - BATHURST, R. J.: Observed Long-term Performance of Geosynthetic Walls and Implications for Design. Geosynthetics International, Vol. 9, Iss. 5–6, 2002, pp. 567–606, https://doi.org/10.1680/gein.9.0228.10.1680/gein.9.0228 Search in Google Scholar

[8] ALLEN, T. - BATHURST, R. J.: An Improved Simplified Method for Prediction of Loads in Reinforced Soil Walls. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 141, Iss. 11, 2015, p. 14, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001355.10.1061/(ASCE)GT.1943-5606.0001355 Search in Google Scholar

[9] WU, J. T. H.: CTI-UCD-1-94: Design and Construction of Low Cost Retaining Walls: The Next Generation in Technology. Colorado Transport Institute, Denver, Colorado, USA, 1994, p. 152, https://www.codot.gov/programs/research/pdfs/1994-research-reports/retainingwalls.pdf. Search in Google Scholar

[10] HRLICH, M. - MIRMORADI, S. H.: Evaluation of the Effects of Facing Stiffness and Toe Resistance on the Behavior of GRS walls. Geotextiles and Geomembranes, Vol. 40, 2013, pp. 28–36, https://doi.org/10.1016/j.geotexmem.2013.07.012.10.1016/j.geotexmem.2013.07.012 Search in Google Scholar

[11] DRUSA, M. - VLCEK, J.: Importance of Results Obtained from Geotechnical Monitoring for Evaluation of Reinforced Soil Structure - Case Study. Journal of Applied Engineering Sciences, Vol. 6, Iss. 1, 2016, pp. 23–27, https://doi.org/10.1515/jaes-2016-0002.10.1515/jaes-2016-0002 Search in Google Scholar

[12] WANG, Z. - JACOBS, F. - ZIEGLER, M.: Visualization of Load Transfer Behaviour between Geogrid and Sand Using PFC2D. Geotextiles and Geomembranes, Vol. 42, Iss. 1, 2014, pp. 83–90, https://doi.org/10.1016/j.geotexmem.2014.01.001.10.1016/j.geotexmem.2014.01.001 Search in Google Scholar

[13] YASHIMA, A. - TSUJI, S. - YOSHIDA, K. - YOKOTA, Y.: A New Optical Fibre Sensor to Assess the Stability of Geogrid-reinforced Soil Walls. Geosynthetics International, Vol. 16, Iss. 4, 2009, pp. 238–245, https://doi.org/10.1680/gein.2009.16.4.238.10.1680/gein.2009.16.4.238 Search in Google Scholar

[14] BENJAMIM, C. V. S. - ZORNBERG, J. G. - BUENO, B. S.: Field Monitoring Evaluation of Geotextile-Reinforced Soil-retaining Walls. Geosynthetic International, Vol. 14, Iss. 2, 2007, pp. 100–118, https://doi.org/10.1680/gein.2007.14.2.100.10.1680/gein.2007.14.2.100 Search in Google Scholar

[15] LEE, Y. B. - KO, H. Y. - MCCARTNEY, J. S.: Deformation Response of Shored MSE Walls under Surcharge Loading in the Centrifuge. Geosynthetics International, Vol. 17, Iss. 6, 2010, pp. 389–402, https://doi.org/10.1680/gein.2010.17.6.389.10.1680/gein.2010.17.6.389 Search in Google Scholar

[16] EHRLICH, M. - MIRMORADI, S. H. - SARAMAGO, R. P.: Evaluation of the Effects of Compaction on the Behavior of Geosynthetic-reinforced Soil Walls. Geotextiles and Geomembranes, Vol. 34, 2012, p. 108–115, https://doi.org/10.1016/j.geotexmem.2012.05.005.10.1016/j.geotexmem.2012.05.005 Search in Google Scholar

[17] SCOTLAND, I. - DIXON, N. - FROST, M. - FOWMES, G. - HORGAN, G.: Modelling Deformation During the Construction of Wrapped Geogrid Reinforced Structures. Geosynthetics International, Vol. 23, Iss. 3, 2016, pp. 219–232, https://doi.org/10.1680/jgein.15.00049.10.1680/jgein.15.00049 Search in Google Scholar

[18] FINE GEO5 - User Guide 3/2021. https://www.finesoftware.eu/user-guides/. Search in Google Scholar

[19] NGUYEN, G.: Determination of Stress in Spread Foundation Subsoil by Various Approaches. Civil and Environmental Engineering, Vol. 11, Iss. 1, 2015, pp. 28–36, https://doi.org/10.1515/cee-2015-0004.10.1515/cee-2015-0004 Search in Google Scholar

[20] PLAXIS 2D CE V21.01:1 - Tutorial Manual, https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/46137/manuals---plaxis. Search in Google Scholar

[21] SCHANZ, T. - VERMEER, P. A. - BONNIER, P. G.: The Hardening Soil Model: Formulation and Verification. In: Beyound 2000 in Computational Geotechnics – 10 Years of Plaxis, International Symposium, Amsterdam, Netherlands, 1999, pp. 281–296, https://doi.org/10.1201/9781315138206-27.10.1201/9781315138206-27 Search in Google Scholar

[22] MIRMORADI, S. H. - EHRLICH, M.: Modeling of the Compaction-induced Stress on Reinforced Soil Walls. Geotextiles and Geomembranes, Vol. 43, Iss. 1, 2015, pp. 82–88, https://doi.org/10.1016/j.geotexmem.2014.11.001.10.1016/j.geotexmem.2014.11.001 Search in Google Scholar

[23] DRUSA, M. - VLCEK, J. - HOLICKOVA, M. - KAIS, L.: Analytical and Numerical Evaluation of Limit States of MSE Wall Structure. Civil and Environmental Engineering, Vol. 12, Iss. 2, 2016, pp. 145–152, https://doi.org/10.1515/cee-2016-0020.10.1515/cee-2016-0020 Search in Google Scholar

[24] STACHO, J. - SULOVSKA, M. - SLAVIK, I.: Determining the Shear Strength Properties of a Soil-geogrid Interface Using a Large-scale Direct Shear Test Apparatus. Periodica Polytechnica Civil Engineering, Vol. 64, Iss. 4, 2020, pp. 989–998, https://doi.org/10.3311/PPci.15766.10.3311/PPci.15766 Search in Google Scholar

[25] SULOVSKA, M. - STACHO, J.: Design of Road Embankment Reinforced Using a Geogrid. SGEM 2019. 19th International Multidisciplinary Scientific GeoConference. Vol. 19. Science and Technologies in Geology, Exploration and Mining, Sofia, Bulgaria, 2019, pp. 145–152, https://doi.org/10.5593/sgem2019/5.4/S22.047.10.5593/sgem2019/5.4/S22.047 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo