Open Access

Nonlinear Finite Element Analysis of Reinforced and Plain Concrete Haunched Beams Under Torsion


Cite

[1] ANSYS Mechanical APDL Element Reference, 2013, U.S.A. Search in Google Scholar

[2] ARCHUNDIA ARANDA, H. I. – TENA COLUNGA, A. – GRANDE VEGA, A.: Behaviour of reinforced concrete haunched beams subjected to cyclic shear loading. Engineering Structures, Vol. 49, 2013, pp. 27-42.10.1016/j.engstruct.2012.10.037 Search in Google Scholar

[3] BAKHSH, A. H. – WAFA, F. F. – AHKHTARUZZAMAN, A. A.: Torsional behaviour of plain high-strength concrete beams. ACI Structural Journal, Vol. 87, 1991, pp. 583-588.10.14359/2658 Search in Google Scholar

[4] Building Code Requirements for Structural Concrete ACI-318-19, 2019, U.S.A. Search in Google Scholar

[5] EL NIEMA, E. I.: Investigation of reinforced concrete haunched T-beams under shear. ASCE, Journal of Structural Engineering, Vol. 114, 1988, pp. 917-930.10.1061/(ASCE)0733-9445(1988)114:4(917) Search in Google Scholar

[6] FANG, I. K. – SHIAU, J. K.: Torsional Behaviour of Normal- and High-Strength Concrete Beams. ACI Structural Journal, Vol. 101, 2004, pp. 304-313.10.14359/13090 Search in Google Scholar

[7] GODÍNEZ DOMÍNGUEZ, E. A. – TENA COLUNGA, A. – JUÁREZ LUNA, G.: Nonlinear finite element modelling of reinforced concrete haunched beams designed to develop a shear failure. Engineering Structures, Vol. 105, 2015, pp. 99-122.10.1016/j.engstruct.2015.09.023 Search in Google Scholar

[8] HOU, C. – MATSUMOTO, K. – NIWA, J.: Shear failure mechanism of reinforced concrete haunched beams. JSCE, Japan Society of Civil Engineering, Vol. 3, 2015, pp. 230-245.10.2208/journalofjsce.3.1_230 Search in Google Scholar

[9] HASSOUN, M. N. – AL MANASEER, A.: Structural Concrete Theory and Design. JOHN WILEY & SONS, New Jersey, 2012. Search in Google Scholar

[10] MOSTOFINEJAD, D. - TALAEITABA, S. B.: Nonlinear Modelling of RC Beams Subjected to Torsion using the Smeared Crack Model. The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction, 2011, pp. 1447–1454, Hong Kong.10.1016/j.proeng.2011.07.182 Search in Google Scholar

[11] NEVILLE, M. – BROOKS, J. J.: Elasticity and creep. Concrete Technology. Pearson Education Limited, England, 2010, pp. 206-232. Search in Google Scholar

[12] NILSSON, A. H. – DARWIN, D. – DOLAN, C. W.: Analysis and design for torsion. Design of Concrete Structures. McGraw-Hill Education, New York, 2010, pp. 241-261. Search in Google Scholar

[13] RASMUSSEN, L. J. – BAKER, G.: Torsion in reinforced normal and high-strength concrete beams -Part 1: experimental test series. ACI Structural Journal, Vol. 92, 1995, pp. 56-62.10.14359/1476 Search in Google Scholar

[14] Bhavikatti, S.S.: Finite Element Analysis. New Age International Publisher, 2005, New Delhi. Search in Google Scholar

[15] TENA COLUNGA, A. – ARCHUNDIA ARANDA, H. I. – GONZALEZ CUEVAS, O.: Behaviour of reinforced concrete haunched beams subjected to static shear loading. Engineering Structures, Vol. 30, 2008, pp. 478-492.10.1016/j.engstruct.2007.04.017 Search in Google Scholar

[16] TENA COLUNGA, A. – URBINA CALIFORNIAS, L. A. – ARCHUNDIA ARANDA, H. I.: Assessment of the shear strength of continuous reinforced concrete haunched beams based upon cyclic testing. Journal of Building Engineering, Vol. 11, 2017, pp. 187-204.10.1016/j.jobe.2017.04.018 Search in Google Scholar

[17] TENA COLUNGA, A. – URBINA CALIFORNIAS, L. A. – ARCHUNDIA ARANDA, H. I.: Cyclic behaviour of continuous reinforced concrete haunched beams with transverse reinforcement designed to fail in shear. Construction and Building Materials, Vol. 151, 2017, pp. 546-562.10.1016/j.conbuildmat.2017.05.123 Search in Google Scholar

[18] WIGHT, J. K. – MACGREGOR, J. G.: Materials. Reinforced Concrete Mechanics and Design. Pearson Education Limited, England, 2012, pp. 43-104. Search in Google Scholar

[19] HIBBELER, R. C.: Mechanics of Materials. Pearson Prentice Hall, 2014, Ninth Edition. Search in Google Scholar

eISSN:
2199-6512
Language:
English