Open Access

Pharmaceuticals and Personal Care Products in the Environment with Emphasis on Horizontal Transfer of Antibiotic Resistance Genes


Cite

[1] Fetting C. The European Green Deal. ESDN Report. 2020. Search in Google Scholar

[2] Palmer E. Introduction: The Sustainable Development Goals Forum. J Glob Ethics. 2015;11:3-9. DOI: 10.1080/17449626.2015.1021091.10.1080/17449626.2015.1021091 Search in Google Scholar

[3] Kroto HW, Zielińska M, Rajfur M, Wacławek M. The climate change crisis? Chem Didact Ecol Metrol. 2016;21:11-27. DOI: 10.1515/cdem-2016-0001.10.1515/cdem-2016-0001 Search in Google Scholar

[4] Crutzen PJ, Wacławek S. Atmospheric chemistry and climate in the Anthropocene. Chem Didact Ecol Metrol. 2014;19:9-28. DOI: 10.1515/cdem-2014-0001.10.1515/cdem-2014-0001 Search in Google Scholar

[5] Wu C-H, Tsai S-B, Liu W, Shao X-F, Sun R, Wacławek M. Eco-technology and eco-innovation for green sustainable growth. Ecol Chem Eng S. 2021;28:7-10. DOI: 10.2478/eces-2021-0001.10.2478/eces-2021-0001 Search in Google Scholar

[6] McGrath L, Hynes S, McHale J. The air we breathe: Estimates of air pollution extended genuine savings for Europe. Rev Income Wealth. 2022;68:161-88. DOI: 10.1111/roiw.12512.10.1111/roiw.12512 Search in Google Scholar

[7] Lee JW. Green finance and sustainable development goals: The case of China. J Asian Finance, Economics Business. 2020;7:577-86. DOI: 10.13106/jafeb.2020.vol7.no7.577.10.13106/jafeb.2020.vol7.no7.577 Search in Google Scholar

[8] Shahid MK, Kashif A, Fuwad A, Choi Y. Current advances in treatment technologies for removal of emerging contaminants from water - A critical review. Coord Chem Rev. 2021;442:213993. DOI: 10.1016/J.CCR.2021.213993.10.1016/j.ccr.2021.213993 Search in Google Scholar

[9] Prasad MNV, Meththika V, Atya K, editors. Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology. Emerging Contaminants and Micro Pollutants. Elsevier; 2019. DOI: 10.1016/C2017-0-03544-9.10.1016/C2017-0-03544-9 Search in Google Scholar

[10] Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19:56-66. DOI: 10.1016/S1473-3099(18)30605-4.10.1016/S1473-3099(18)30605-4630048130409683 Search in Google Scholar

[11] Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399:629-55. DOI: 10.1016/S0140-6736(21)02724-0.10.1016/S0140-6736(21)02724-0884163735065702 Search in Google Scholar

[12] Liu G, Qin M. Analysis of the distribution and antibiotic resistance of pathogens causing infections in hospitals from 2017 to 2019. Evid Based Complement Alternat Med. 2022;2022:3512582. DOI: 10.1155/2022/3512582.10.1155/2022/3512582950774036159558 Search in Google Scholar

[13] Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid transfer by conjugation in Gram-negative bacteria: From the cellular to the community level. Genes. 2020;11. DOI: 10.3390/genes11111239.10.3390/genes11111239769042833105635 Search in Google Scholar

[14] Frazão N, Sousa A, Lässig M, Gordo I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc Natl Acad Sci USA. 2019;116:17906-15. DOI:10.1073/pnas.1906958116.10.1073/pnas.1906958116673168931431529 Search in Google Scholar

[15] Arnold BJ, Huang I-T, Hanage WP. Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol. 2022;20:206-18. DOI:10.1038/s41579-021-00650-4.10.1038/s41579-021-00650-434773098 Search in Google Scholar

[16] Mahendra C, Christie KA, Osuna BA, Pinilla-Redondo R, Kleinstiver BP, Bondy-Denomy J. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat Microbiol. 2020;5:620-9. DOI: 10.1038/s41564-020-0692-2.10.1038/s41564-020-0692-2719498132218510 Search in Google Scholar

[17] Tao S, Chen H, Li N, Liang W. The application of the CRISPR-Cas system in antibiotic resistance. Infect Drug Resist. 2022;15:4155-68. DOI: 10.2147/IDR.S370869.10.2147/IDR.S370869935660335942309 Search in Google Scholar

[18] Saha U, Gondi R, Patil A, Saroj SD. CRISPR in modulating antibiotic resistance of ESKAPE pathogens. Mol Biotechnol. 2022. DOI: 10.1007/s12033-022-00543-8.10.1007/s12033-022-00543-835939207 Search in Google Scholar

[19] Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-based vaccines for tuberculosis. Front Immunol. 2022;13:830497. DOI: 10.3389/fimmu.2022.830497.10.3389/fimmu.2022.830497884175335173740 Search in Google Scholar

[20] Birger R, Antillón M, Bilcke J, Dolecek C, Dougan G, Pollard AJ, et al. Estimating the effect of vaccination on antimicrobial-resistant typhoid fever in 73 countries supported by Gavi: a mathematical modelling study. Lancet Infect Dis. 2022;22: 679-91. DOI: 10.1016/S1473-3099(21)00627-7.10.1016/S1473-3099(21)00627-7902102635123673 Search in Google Scholar

[21] Mayer RL, Verbeke R, Asselman C, Aernout I, Gul A, Eggermont D, et al. Immunopeptidomics-based design of mRNA vaccine formulations against Listeria monocytogenes. Nat Commun. 2022;13:6075. DOI: 10.1038/s41467-022-33721-y.10.1038/s41467-022-33721-y956207236241641 Search in Google Scholar

[22] Wang H, Chen D, Lu H. Anti-bacterial monoclonal antibodies: next generation therapy against superbugs. Appl Microbiol Biotechnol. 2022;106:3957-72. DOI: 10.1007/s00253-022-11989-w.10.1007/s00253-022-11989-w35648146 Search in Google Scholar

[23] Zhou SYD, Lin C, Yang K, Yang LY, Yang XR, Huang FY, et al. Discarded masks as hotspots of antibiotic resistance genes during COVID-19 pandemic. J Hazard Mater. 2022;425:127774. DOI: 10.1016/J.JHAZMAT.2021.127774.10.1016/j.jhazmat.2021.127774865951634801300 Search in Google Scholar

[24] Miłobedzka A, Ferreira C, Vaz-Moreira I, Calderón-Franco D, Gorecki A, Purkrtova S, et al. Monitoring antibiotic resistance genes in wastewater environments: The challenges of filling a gap in the one-health cycle. J Hazard Mater. 2022;424: 127407. DOI: 10.1016/J.JHAZMAT.2021.127407.10.1016/j.jhazmat.2021.12740734629195 Search in Google Scholar

[25] Onohuean H, Agwu E, Nwodo UU. Systematic review and meta-analysis of environmental Vibrio species -antibiotic resistance. Heliyon. 2022;8:e08845. DOI: 10.1016/j.heliyon.2022.e08845.10.1016/j.heliyon.2022.e08845889970535265752 Search in Google Scholar

[26] Larsson DGJ, Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20:257-69. DOI: 10.1038/s41579-021-00649-x.10.1038/s41579-021-00649-x856797934737424 Search in Google Scholar

[27] Hutinel M, Larsson DGJ, Flach CF. Antibiotic resistance genes of emerging concern in municipal and hospital wastewater from a major Swedish city. Sci Total Environ. 2022;812:151433. DOI: 10.1016/J.SCITOTENV.2021.151433.10.1016/j.scitotenv.2021.15143334748849 Search in Google Scholar

[28] Haenni M, Dagot C, Chesneau O, Bibbal D, Labanowski J, Vialette M, et al. Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. Environ Int. 2022;159:107047. DOI: 10.1016/J.ENVINT.2021.107047.10.1016/j.envint.2021.10704734923370 Search in Google Scholar

[29] Ma CY, Ihara M, Liu S, Sugie Y, Tanaka H. Tracking the source of antibiotic-resistant Escherichia coli in the aquatic environment in Shiga, Japan, through whole-genome sequencing. Environ Advances. 2022;8:100185. DOI: 10.1016/J.ENVADV.2022.100185.10.1016/j.envadv.2022.100185 Search in Google Scholar

[30] Chang S-M, Chen J-W, Tsai C-S, Ko W-C, Scaria J, Wang J-L. Antimicrobial-resistant Escherichia coli distribution and whole-genome analysis of sequence type 131 Escherichia coli isolates in public restrooms in Taiwan. Front Microbiol. 2022;13:864209. DOI: 10.3389/fmicb.2022.864209.10.3389/fmicb.2022.864209904407435495726 Search in Google Scholar

[31] Zou H, Han J, Zhao L, Wang D, Guan Y, Wu T, et al. The shared NDM-positive strains in the hospital and connecting aquatic environments. Sci Total Environ. 2022;160404. DOI: 10.1016/J.SCITOTENV.2022.16040410.1016/j.scitotenv.2022.16040436427732 Search in Google Scholar

[32] Malayil L, Ramachandran P, Chattopadhyay S, M. Allard S, Bui A, Butron J, et al. Variations in bacterial communities and antibiotic resistance genes across diverse recycled and surface water irrigation sources in the Mid-Atlantic and Southwest United States: A CONSERVE two-year field study. Environ Sci Technol. 2022;56:15019-33. DOI: 10.1021/acs.est.2c02281.10.1021/acs.est.2c02281963224036194536 Search in Google Scholar

[33] al Salah DMM, Laffite A, Sivalingam P, Poté J. Occurrence of toxic metals and their selective pressure for antibiotic-resistant clinically relevant bacteria and antibiotic-resistant genes in river receiving systems under tropical conditions. Environ Sci Pollut Res Int. 2022;29:20530-41. DOI: 10.1007/s11356-021-17115-z.10.1007/s11356-021-17115-z889821634739670 Search in Google Scholar

[34] Victoria NS, Sree Devi Kumari T, Lazarus B. Assessment on impact of sewage in coastal pollution and distribution of fecal pathogenic bacteria with reference to antibiotic resistance in the coastal area of Cape Comorin, India. Mar Pollut Bull. 2022;175:113123. DOI: 10.1016/j.marpolbul.2021.113123.10.1016/j.marpolbul.2021.11312334872749 Search in Google Scholar

[35] Keenum I, Liguori K, Calarco J, Davis BC, Milligan E, Harwood VJ, et al. A framework for standardized qPCR-targets and protocols for quantifying antibiotic resistance in surface water, recycled water and wastewater. Crit Rev Environ Sci Technol. 2022;52:4395-419. DOI: 10.1080/10643389.2021.2024739.10.1080/10643389.2021.2024739 Search in Google Scholar

[36] Liguori K, Keenum I, Davis BC, Calarco J, Milligan E, Harwood VJ, et al. Antimicrobial resistance monitoring of water environments: A framework for standardized methods and quality control. Environ Sci Technol. 2022;56:9149-60. DOI: 10.1021/acs.est.1c08918.10.1021/acs.est.1c08918926126935732277 Search in Google Scholar

[37] Hossain A, Habibullah-Al-Mamun M, Nagano I, Masunaga S, Kitazawa D, Matsuda H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environ Sci Pollut Res Int. 2022;29:11054-75. DOI: 10.1007/s11356-021-17825-4.10.1007/s11356-021-17825-435028843 Search in Google Scholar

[38] Li W, Zhang G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environ Res. 2022;212:113267. DOI: 10.1016/J.ENVRES.2022.113267.10.1016/j.envres.2022.11326735413299 Search in Google Scholar

[39] Li Z, Junaid M, Chen G, Wang J. Interactions and associated resistance development mechanisms between microplastics, antibiotics and heavy metals in the aquaculture environment. Rev Aquac. 2022;14:1028-45. DOI: 10.1111/raq.12639.10.1111/raq.12639 Search in Google Scholar

[40] He LX, He LY, Gao FZ, Wu DL, Ye P, Cheng YX, et al. Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture. Sci Total Environ. 2022;808:152042. DOI: 10.1016/J.SCITOTENV.2021.152042.10.1016/j.scitotenv.2021.15204234856250 Search in Google Scholar

[41] Wang Y, Ma L, He J, He Z, Wang M, Liu Z, et al. Environmental risk characteristics of bacterial antibiotic resistome in Antarctic krill. Ecotoxicol Environ Saf. 2022;232:113289. DOI: 10.1016/J.ECOENV.2022.11328910.1016/j.ecoenv.2022.11328935144128 Search in Google Scholar

[42] Zhou Y, Li WB, Kumar V, Necibi MC, Mu YJ, Shi CZ, et al. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective. Environ Res. 2022;211:113075. DOI: 10.1016/J.ENVRES.2022.113075.10.1016/j.envres.2022.11307535271831 Search in Google Scholar

[43] Mutuku C, Gazdag Z, Melegh S. Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J Microbiol Biotechnol. 2022;38:152. DOI: 10.1007/s11274-022-03334-0.10.1007/s11274-022-03334-0925091935781751 Search in Google Scholar

[44] Aziz A, Sengar A, Basheer F, Farooqi IH, Isa MH. Anaerobic digestion in the elimination of antibiotics and antibiotic-resistant genes from the environment - A comprehensive review. J Environ Chem Eng. 2022;10:106423. DOI: 10.1016/J.JECE.2021.106423.10.1016/j.jece.2021.106423 Search in Google Scholar

[45] Haffiez N, Azizi SMM, Zakaria BS, Dhar BR. Propagation of antibiotic resistance genes during anaerobic digestion of thermally hydrolyzed sludge and their correlation with extracellular polymeric substances. Sci Rep. 2022;12:6749. DOI: 10.1038/s41598-022-10764-1.10.1038/s41598-022-10764-1903876235468927 Search in Google Scholar

[46] Zhang Z, Li X, Liu H, Zamyadi A, Guo W, Wen H, et al. Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A state-of-art review. Bioresour Technol. 2022;344:126197. DOI: 10.1016/J.BIORTECH.2021.126197.10.1016/j.biortech.2021.12619734710608 Search in Google Scholar

[47] Deng Y, Zhang K, Zou J, Li X, Wang Z, Hu C. Electron shuttles enhanced the removal of antibiotics and antibiotic resistance genes in anaerobic systems: A review. Front Microbiol. 2022;13. DOI: 10.3389/fmicb.2022.1004589.10.3389/fmicb.2022.1004589949012936160234 Search in Google Scholar

[48] Zhong J, Ahmed Y, Carvalho G, Wang Z, Wang L, Mueller JF, et al. Simultaneous removal of micropollutants, antibiotic resistant bacteria, and antibiotic resistance genes using graphitic carbon nitride under simulated solar irradiation. Chem Eng J. 2022;433:133839. DOI: 10.1016/J.CEJ.2021.133839.10.1016/j.cej.2021.133839 Search in Google Scholar

[49] Fang J, Jin L, Meng Q, Shan S, Wang D, Lin D. Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via transformation. J Hazard Mater. 2022;423:127150. DOI: 10.1016/J.JHAZMAT.2021.127150.10.1016/j.jhazmat.2021.12715034530277 Search in Google Scholar

[50] Wu Y, Yan H, Zhu X, Liu C, Chu C, Zhu X, et al. Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via restraining the energy supply for conjugative plasmid transfer. Environ Sci Technol. 2022;56: 12573-83. DOI: 10.1021/acs.est.2c02701.10.1021/acs.est.2c0270135944241 Search in Google Scholar

[51] Cui H, Smith AL. Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: A comprehensive review. Environ Res. 2022;204:112373. DOI: 10.1016/J.ENVRES.2021.112373.10.1016/j.envres.2021.11237334774508 Search in Google Scholar

[52] Li YX, Chen TB. Concentrations of additive arsenic in Beijing pig feeds and the residues in pig manure. Resour Conserv Recycl. 2005;45:356-67. DOI: 10.1016/J.RESCONREC.2005.03.002.10.1016/j.resconrec.2005.03.002 Search in Google Scholar

[53] Palm M, Fransson A, Hultén J, Búcaro Stenman K, Allouche A, Chiang OE, et al. The effect of heavy metals on conjugation efficiency of an F-plasmid in Escherichia coli. Antibiotics. 2022;11. DOI: 10.3390/antibiotics11081123.10.3390/antibiotics11081123940489036009992 Search in Google Scholar

[54] Yonathan K, Mann R, Mahbub KR, Gunawan C. The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. Environ Pollut. 2022;293:118506. DOI: 10.1016/J.ENVPOL.2021.118506.10.1016/j.envpol.2021.11850634793904 Search in Google Scholar

[55] Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, et al. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Sci Total Environ. 2022;821:153472. DOI: 10.1016/J.SCITOTENV.2022.153472.10.1016/j.scitotenv.2022.15347235093375 Search in Google Scholar

[56] Zhang R, Yang S, An Y, Wang Y, Lei Y, Song L. Antibiotics and antibiotic resistance genes in landfills: A review. Sci Total Environ. 2022;806:150647. DOI: 10.1016/J.SCITOTENV.2021.150647.10.1016/j.scitotenv.2021.15064734597560 Search in Google Scholar

[57] Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ. Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution. Sci Total Environ. 2023;857:159059. DOI: 10.1016/J.SCITOTENV.2022.159059.10.1016/j.scitotenv.2022.15905936174689 Search in Google Scholar

[58] Ma L, Yang H, Guan L, Liu X, Zhang T. Risks of antibiotic resistance genes and antimicrobial resistance under chlorination disinfection with public health concerns. Environ Int. 2022;158:106978. DOI: 10.1016/J.ENVINT.2021.106978.10.1016/j.envint.2021.10697834784521 Search in Google Scholar

[59] Jiang S, Li Q, Wang F, Wang Z, Cao X, Shen X, et al. Highly effective and sustainable antibacterial membranes synthesized using biodegradable polymers. Chemosphere. 2022;291:133106. DOI: 10.1016/J.CHEMOSPHERE.2021.133106.10.1016/j.chemosphere.2021.13310634848235 Search in Google Scholar

[60] Cheng CF, Lin HHH, Tung HH, Lin AYC. Enhanced solar photodegradation of a plasmid-encoded extracellular antibiotic resistance gene in the presence of free chlorine. J Environ Chem Eng. 2022;10:106984. DOI: 10.1016/J.JECE.2021.106984.10.1016/j.jece.2021.106984 Search in Google Scholar

[61] Sánchez-Montes I, Salmerón I, Aquino JM, Polo-López MI, Malato S, Oller I. Solar-driven free chlorine advanced oxidation process for simultaneous removal of microcontaminants and microorganisms in natural water at pilot-scale. Chemosphere. 2022;288:132493. DOI: 10.1016/J.CHEMOSPHERE.2021.132493.10.1016/j.chemosphere.2021.13249334637860 Search in Google Scholar

[62] Meng LX, Sun YJ, Zhu L, Lin ZJ, Shuai XY, Zhou ZC, et al. Mechanism and potential risk of antibiotic resistant bacteria carrying last resort antibiotic resistance genes under electrochemical treatment. Sci Total Environ. 2022;821:153367. DOI: 10.1016/J.SCITOTENV.2022.153367.10.1016/j.scitotenv.2022.15336735085630 Search in Google Scholar

[63] Manoharan RK, Raorane CJ, Ishaque F, Ahn YH. Antimicrobial photodynamic inactivation of wastewater microorganisms by halogenated indole derivative capped zinc oxide. Environ Res. 2022;214:113905. DOI: 10.1016/J.ENVRES.2022.113905.10.1016/j.envres.2022.11390535948149 Search in Google Scholar

[64] Syranidou E, Kalogerakis N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs. Sci Total Environ. 2022;804:150141. DOI: 10.1016/J.SCITOTENV.2021.15014110.1016/j.scitotenv.2021.15014134509832 Search in Google Scholar

[65] Wang J, Chen X. Removal of antibiotic resistance genes (ARGs) in various wastewater treatment processes: An overview. Crit Rev Environ Sci Technol. 2022;52:571-630. DOI: 10.1080/10643389.2020.1835124.10.1080/10643389.2020.1835124 Search in Google Scholar

[66] Bai H, He LY, Wu DL, Gao FZ, Zhang M, Zou HY, et al. Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Environ Int. 2022;158:106927. DOI: 10.1016/J.ENVINT.2021.106927.10.1016/j.envint.2021.10692734673316 Search in Google Scholar

[67] Gwenzi W, Shamsizadeh Z, Gholipour S, Nikaeen M. The air-borne antibiotic resistome: Occurrence, health risks, and future directions. Sci Total Environ. 2022;804:150154. DOI: 10.1016/J.SCITOTENV.2021.150154.10.1016/j.scitotenv.2021.15015434798728 Search in Google Scholar

[68] Zhou Z, Shuai X, Lin Z, Meng L, Ba X, Holmes MA, et al. Short-term inhalation exposure evaluations of airborne antibiotic resistance genes in environments. J Environ Sci. 2022;122:62-71. DOI: 10.1016/J.JES.2021.10.002.10.1016/j.jes.2021.10.00235717091 Search in Google Scholar

[69] George PBL, Rossi F, St-Germain M-W, Amato P, Badard T, Bergeron MG, et al. Antimicrobial resistance in the environment: Towards elucidating the roles of bioaerosols in transmission and detection of antibacterial resistance genes. Antibiotics. 2022;11. DOI: 10.3390/antibiotics11070974.10.3390/antibiotics11070974931218335884228 Search in Google Scholar

[70] McKinney CW, Dungan RS, Moore A, Leytem AB. Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure. FEMS Microbiol Ecol. 2018;94. DOI: 10.1093/femsec/fiy010.10.1093/femsec/fiy01029360961 Search in Google Scholar

[71] Kittredge HA, Dougherty KM, Evans SE. Dead but not forgotten: How extracellular DNA, moisture, and space modulate the horizontal transfer of extracellular antibiotic resistance genes in soil. Appl Environ Microbiol. 2022;88:e0228021. DOI: 10.1128/aem.02280-21.10.1128/aem.02280-21900438435323025 Search in Google Scholar

[72] Kaviani Rad A, Astaykina A, Streletskii R, Afsharyzad Y, Etesami H, Zarei M, et al. An overview of antibiotic resistance and abiotic stresses affecting antimicrobial resistance in agricultural soils. Int J Environ Res Public Health. 2022;19. DOI: 10.3390/ijerph19084666.10.3390/ijerph19084666902598035457533 Search in Google Scholar

[73] Li Z, Sun A, Liu X, Chen Q-L, Bi L, Ren P-X, et al. Climate warming increases the proportions of specific antibiotic resistance genes in natural soil ecosystems. J Hazard Mater. 2022;430:128442. DOI: 10.1016/j.jhazmat.2022.128442.10.1016/j.jhazmat.2022.12844235158246 Search in Google Scholar

[74] Li H, Zheng X, Tan L, Shao Z, Cao H, Xu Y. The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. Environ Res. 2022;203:111884. DOI: 10.1016/j.envres.2021.111884.10.1016/j.envres.2021.11188434400159 Search in Google Scholar

[75] Zhu L, Lian Y, Lin D, Huang D, Yao Y, Ju F, et al. Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. J Hazard Mater. 2022;437:129356. DOI: 10.1016/J.JHAZMAT.2022.129356.10.1016/j.jhazmat.2022.12935635728317 Search in Google Scholar

[76] Wang J, Wang L, Zhu L, Wang J, Xing B. Antibiotic resistance in agricultural soils: Source, fate, mechanism and attenuation strategy. Crit Rev Environ Sci Technol. 2022;52:847-89. DOI: 10.1080/10643389.2020.1835438.10.1080/10643389.2020.1835438 Search in Google Scholar

[77] Lu XM, Chen YL. Varying characteristics and driving mechanisms of antibiotic resistance genes in farmland soil amended with high-density polyethylene microplastics. J Hazard Mater. 2022;428:128196. DOI: 10.1016/J.JHAZMAT.2021.128196.10.1016/j.jhazmat.2021.12819635030489 Search in Google Scholar

[78] Sun R, He L, Li T, Dai Z, Sun S, Ren L, et al. Impact of the surrounding environment on antibiotic resistance genes carried by microplastics in mangroves. Sci Total Environ. 2022;837:155771. DOI: 10.1016/J.SCITOTENV.2022.155771.10.1016/j.scitotenv.2022.15577135537514 Search in Google Scholar

eISSN:
2084-4506
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other