Open Access

Study of Conceptual Knowledge and Mode of Reasoning Relating to the Characteristics of Covalent Bonds in Future Algerian Physics Teachers


Cite

[1] Taber KS. Conceptual integration and science learners: do we expect too much? Invited seminar paper presented at the Centre for Studies in Science and Mathematics Education. University of Leeds, 2005;2. Available from: https://www.educ.cam.ac.uk/research/programmes/eclipse/CSSME2005.pdf. Search in Google Scholar

[2] Hiberty PC, Volatron F. La théorie de la liaison de valence. Bulletin de l’Union des Physiciens. 2003;97:7-25. Available from: http://www.lcpq.ups-tlse.fr/spip.php?article1431&lang=en. Search in Google Scholar

[3] Dumon A, Luft R. Naissance de la chimiestructurale. Paris: EDP Sciences; 2008. ISBN: 9782759800421. DOI: 10.1051/978-2-7598-0349-1.10.1051/978-2-7598-0349-1 Search in Google Scholar

[4] Pauling L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. New York: Cornell University Press; 1940. ISBN: 9780801403330. DOI: 10.1002/jps.3030300111.10.1002/jps.3030300111 Search in Google Scholar

[5] Champagne AB, Klopfer LE, Desena A, Squires DA. Structural representations of student’s knowledge before and after science instruction. J Res Sci Teach. 1981;18:97-111. DOI: 10.1002/tea.3660180202.10.1002/tea.3660180202 Search in Google Scholar

[6] Turner M. La perspicacité et la mémoire. Conférencelue au Collège de France, à Paris. Available from: https://markturner.org/cdf/cdf3.html. Search in Google Scholar

[7] Winograd T. Frame Representations and the Procedural - Declarative Controversy. In: Bobrow D, Collins A, editors. Representation and Understanding: Studies in Cognitive Science. New York: Academic Press; 1975;185-210. ISBN: 0121085503. DOI: 10.1016/B978-0-12-108550-6.50012-4.10.1016/B978-0-12-108550-6.50012-4 Search in Google Scholar

[8] Orange C. Problèmes et modélisation en biologie- quels apprentissages pour le lycée. Paris: PUF; 1997. ISBN: 2130484212. DOI: 10.7202/031977AR.10.7202/031977ar Search in Google Scholar

[9] Rushton GT, Hardy RC, Gwaltney KP, Lewis SE. Alternative conceptions of organic chemistry topics among fourth year chemistry students. Chem Educ Res Pract. 2008;9:122-30. DOI: 10.1039/B806228P.10.1039/B806228P Search in Google Scholar

[10] Cooper MM, Corley LM, Underwood SM. An investigation of college chemistry student’s understanding of structure-property relationships. J Res Sci Teach. 2013;50:699-721. DOI: 10.1002/tea.21093.10.1002/tea.21093 Search in Google Scholar

[11] Cooper MM, Grove N, Underwood SM, Klymkowsky MW. Lost in Lewis structure: an investigation of student difficulties in developing representational competence. J Chem Educ. 2010;87:869-74. DOI: 10.1021/ed900004y.10.1021/ed900004y Search in Google Scholar

[12] Cooper MM, Underwood SM, Hilley CZ. Development and validation of the implicit information from Lewis structures instrument (IILSI): do students connect structures with properties? Chem Educ Res Pract. 2012;(13):195-200. DOI: 10.1039/C2RP00010E.10.1039/C2RP00010E Search in Google Scholar

[13] Cooper MM, Underwood SM, Hilley CZ, Klymkowsky MW. Development and assessment of a molecular structure and properties learning progression. J Chem Educ. 2012;(89):1351-7. DOI: 10.1021/ed300083a.10.1021/ed300083a Search in Google Scholar

[14] Laszlo P. Describing reactivity with structural formulas, or when push comes to shove. Chem Educ Res Pract. 2002;3:113-8.DOI: 10.1039/B2RP90009B.10.1039/B2RP90009B Search in Google Scholar

[15] Bhattacharyya G, Bodner GM. It gets me to the product: how students propose organic mechanisms. J Chem Educ. 2005;82:1402-7. DOI: 10.1021/ed082p1402.10.1021/ed082p1402 Search in Google Scholar

[16] Ferguson R, Bodner GM. Making sense of the arrow-pushing formalism among chemistry majors enrolled in organic chemistry. Chem Educ Res Pract. 2008;9:102-13.DOI: 10.1039/b806225k.10.1039/B806225K Search in Google Scholar

[17] Kraft A, Strickland A, Bhattacharyya G. Reasonable reasoning: multivariate problem-solving in organic chemistry. Chem Educ Res Pract. 2010;11:281-92. DOI: 10.1039/C0RP90003F.10.1039/C0RP90003F Search in Google Scholar

[18] Barlet R, Plouin D. La dualité microscopique-macroscopique un obstacle sous jacent aux difficultés en chimie dans l’enseignement universitaire. Aster. 1997;25:143-74. DOI: 10.4267/2042/8683.10.4267/2042/8683 Search in Google Scholar

[19] Agrebi S. De la représentation symbolique au langage lors de l’apprentissage des mécanismes en chimie organique dans l’enseignement supérieur. PhD Thesis. Université de Lyon. 2004;2. Available from: http://theses.univ-lyon2.fr/documents/lyon2/2004/agrebi_s#p=0&a=top. Search in Google Scholar

[20] Hassan AK, Hill R, Reid N. Ideas underpinning success in an introductory course in organic chemistry. U Chem Educ. 2004;8:40-50. Available from: https://www.rsc.org/images/p2_reid_tcm18-31146.pdf. Search in Google Scholar

[21] Treagust DF. Students’ understanding of the descriptive and predictive nature of teaching models in organic chemistry. Res Sci Educ. 2004;34:1-20. DOI: 10.1023/B:RISE.0000020885.41497.ed.10.1023/B:RISE.0000020885.41497.ed Search in Google Scholar

[22] Gold M. Chemical education: an obsession with content. J Chem Educ. 1988;65:780-1. DOI: 10.1021/ed065p780.10.1021/ed065p780 Search in Google Scholar

[23] Zoller U. Students’ misunderstandings and misconceptions in college freshman chemistry (general and organic). J Res Sci Teach. 1990;27:883-903. DOI: 10.1002/tea.3660271011.10.1002/tea.3660271011 Search in Google Scholar

[24] Dumon A, Sauvaitre H. Comment les étudiants approprient-ils le modèle quantique de la liaison chimique? L’Actualité Chimique. 1995;1:13-22. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj24qit46z1AhWD8eAKHXy_BTYQFnoECAIQAQ&url=https%3A%2F%2Fnew.societechimiquedefrance.fr%2Fwpcontent%2Fuploads%2F2019%2F12%2F1995-192-dec-p77-index.pdf&usg=AOvVaw3EsP6pn0dvVnn8iTSAVo22. Search in Google Scholar

[25] Tsaparlis G. Atomic orbitals, molecular orbitals and related concepts: conceptual difficulties among chemistry students. Res Sci Educ. 1997;27:271-87. DOI: 10.1007/BF02461321.10.1007/BF02461321 Search in Google Scholar

[26] Taber KS. Building the structural concepts of chemistry: some consideration from educational research. Chem Educ Res Pract. 2001;2:123-58. DOI: 10.1039/B1RP90014E.10.1039/B1RP90014E Search in Google Scholar

[27] Taber KS. Conceptualising quanta: illuminating the ground state of student understanding of atomic orbitals. Chem Educ Res Pract. 2002;3:145-58. DOI: 10.1039/B2RP90012B.10.1039/B2RP90012B Search in Google Scholar

[28] Taber KS. Compounding quanta: probing the frontiers of student understanding of molecular orbitals. Chem Educ Res Pract. 2002;3:159-73. DOI: 10.1039/B2RP90013K.10.1039/B2RP90013K Search in Google Scholar

[29] Tsaparlis G, Papaphotis G. Quantum-chemical concepts: are they suitable for secondary students? Chem Educ Res Pract. 2002;3:129-44. DOI: 10.1039/B2RP90011D.10.1039/B2RP90011D Search in Google Scholar

[30] Nakiboglu C. Using word associations for assessing non major science students’ knowledge structure before and after general chemistry instruction: the case of atomic structure. Chem Educ Res Pract. 2008;9:309-22. DOI: 10.1039/B818466F.10.1039/B818466F Search in Google Scholar

[31] Papaphotis G, Tsaparlis G. Conceptual versus algorithmic learning in high school chemistry: the case of basic quantum chemical concepts. Part 1: Statistical analysis of a quantitative study. Chem Educ Res Pract. 2008;9:323-31. DOI: 10.1039/B818468M.10.1039/B818468M Search in Google Scholar

[32] Hazzi S, Dumon A. Conceptual integration of hybridisation by Algerian students intending to teach physical sciences. Chem Educ Res Pract. 2011;12:443-53. DOI: 10.1039/C1RP90049H.10.1039/C1RP90049H Search in Google Scholar

[33] Hazzi S, Dumon A. Conceptual integration of covalent bonds models by Algerian students. Chem Educ Res Pract. 2014;15:675-88. DOI: 10.1039/C4RP00041B.10.1039/C4RP00041B Search in Google Scholar

[34] Coll RK, Treagust DF. Exploring tertiary students’ understanding of covalent bonding. Res Sci Tech Educ. 2002;20:241-67. DOI: 10.1080/0263514022000030480.10.1080/0263514022000030480 Search in Google Scholar

[35] Bucat RB, Mocerino M. Learning at the sub-micro level: structural representations. In: Gilbert JK, Treagust D, editors. Multiple Representations in Chemical Education, Models and Modeling in Science Education. New York: Springer Verlag; 2009:11-30. DOI: 10.1007/978-1-4020-8872-8.10.1007/978-1-4020-8872-8 Search in Google Scholar

[36] Nordholm S, Bacskay GB. The basics of covalent bonding in terms of energy and dynamics. Molecules. 2020;25(11):2667. DOI: 10.3390/molecules25112667.10.3390/molecules25112667732112532521828 Search in Google Scholar

[37] Valence Bond Theory. 2020. Available from: https://chem.libretexts.org/@go/page/2002. Search in Google Scholar

[38] Tsaparlis G, Pantazi G, Pappa ET, Byers B. Using electrostatic potential maps as visual representations to promote better understanding of chemical bonding. Chem Teach Inter. 2021;3(4):391-411. DOI: 10.1515/cti-2021-0012.10.1515/cti-2021-0012 Search in Google Scholar

[39] Ilmah M, Yahmin Y, Muntholib M. Analysis of chemistry teachers’ covalent bond conceptual understanding through diagnostic interview technique. J-PEK. 2020;5(2):108-15. DOI: 10.17977/um026v5i22020p108.10.17977/um026v5i22020p108 Search in Google Scholar

eISSN:
2084-4506
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other