1. bookVolume 25 (2020): Issue 1-2 (December 2020)
Journal Details
License
Format
Journal
First Published
17 Jan 2013
Publication timeframe
2 times per year
Languages
English
access type Open Access

Determining Cellulolytic Activity of Microorganisms

Published Online: 29 Jan 2021
Page range: 133 - 143
Journal Details
License
Format
Journal
First Published
17 Jan 2013
Publication timeframe
2 times per year
Languages
English
Abstract

Decomposition of cellulose to glucose requires complex cooperation of glycoside hydrolase enzymes. As a result of glycoside β-1,4 bonds hydrolysis, shorter chains of cellulose, oligodextrin, cellobiose and glucose are created. A number of bacteria and fungi demonstrate the capacity to degrade cellulose. Their activity can be assessed with the use of qualitative and quantitative methods. Qualitative methods with the use of e.g. Congo red, are used in screening studies, however, they do not provide information about the quantity of the produced enzyme. Spectrophotometric methods are more accurate and they measure the quantities of reducing sugars with the use of appropriate substrates, e.g. carboxymethylcellulose is used to determine endoglucanases, avicel cellulose to determine exoglucanases and Whatman filter paper to determine total cellulolytic activity. Activity of microorganisms depends not only on their species or type but also, among others, on substratum composition, cultivation conditions and the appropriate selection of parameters of the carried out enzymatic reactions.

Keywords

[1] Poszytek K. Mikrobiologiczna utylizacja celulozy (Microbial cellulose utilization). Post Mikrobiol. 2016;55:2:132-46. Available from: http://pm.microbiology.pl/web/archiwum/vol5522016132.pdf.Search in Google Scholar

[2] Eveleigh DE, Mandels M, Andreotti R, Roche Ch. Measurement of saccharifying cellulase. Biotechnol Biofuels. 2009;2:21. DOI: 10.1186/1754-6834-2-21.Search in Google Scholar

[3] Reddy KV, Vijayalashmi T, Ranjit P, Raju MN. Characterization of some efficient cellulase producing bacteria isolated from pulp and paper mill effluent contaminated soil. Braz Arch Biol Technol. 2017;60:e17160226. DOI: 10.1590/1678-4324-2017160226.Search in Google Scholar

[4] Juturu V, Chuan Wu J. Microbial cellulases: Engineering, production and applications. Renew Sust Energy Rev. 2014;33:188-203. DOI: 10.1016/j.rser.2014.01.077.Search in Google Scholar

[5] Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels. 2012;5:45. DOI: 10.1186/1754-6834-5-45.Search in Google Scholar

[6] Lynd LR, Weimer PJ, van Zyl W, Pretorius IS. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Molecular Biol Rev. 2002;66:3:506-77. DOI: 10.1128/MMBR.66.3.506-577.2002.Search in Google Scholar

[7] Shuangqi T, Zhenyu W, Ziluan F, Lili Z, Jichang W. Determination methods of cellulase activity. Afr J Biotech. 2011;10:37:7122-5. DOI: 10.5897/AJB10.2243.Search in Google Scholar

[8] Singhania RR. Cellulolytic Enzymes. Chapter 20. In: Singh P, Pandey A, editors. Biotechnology for Agro-Industrial Residues Utilisation. Utilisation of Agro-Residues. Dordrecht: Springer; 2009; 372-81. ISBN: 9781402099427. DOI: 10.1007/978-1-4020-9942-7_20.Search in Google Scholar

[9] Bayer E, Chanzy, Lamed R, Shoham Y. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol. 1998;8:548-557. DOI: 10.1016/S0959-440x(98)80143-7.Search in Google Scholar

[10] Kale RA, Zanwar PH. Isolation and screening of cellulolytic fungi. IOSR J Biotech Biochem. 2016;2:6:57-61. Available from: http://www.iosrjournals.org/iosr-jbb/papers/Vol2-issue6/Version-2/H0206025761.pdf.Search in Google Scholar

[11] Ordaz-Díaz LA, Rojas-Contreras JA, Flores-Vichi F, Flores-Villegas MY, Álvarez-Álvarez C, Velasco-Vázquez P, et al. Quantification of endoglucanase activity based on carboxymethyl cellulose in four fungi isolated from an aerated lagoon in a pulp and paper mill. BioResour. 2016; 11:3:7781-9. DOI: 10.15376/biores.11.3.7781-7789.Search in Google Scholar

[12] Carvalho Dos Santos T, Filho Ga, Riany De Brito A, Pires AJ, Ferreira Bonomo RB, Franco M. Production and characterization of cellulolytic enzymes by Aspergillus niger and Rhizopus sp. by solid state fermentation of prickly pear. Rev Caatinga Mossoró. 2016;29:1:222-33. DOI: 10.1590/1983-21252016v29n126rc.Search in Google Scholar

[13] Kadarmoidheen M, Saranraj P, Stella D. Effect of cellulolytic fungi on the degradation of cellulosic agricultural wastes. Inter J Appl Microbiol Sci. 2012;1:2:13-23. https://www.academia.edu/3878309/Effect_of_cellulolytic_fungi_for_the_degradation_of_cellulosic_agricultural_wastes.Search in Google Scholar

[14] El-Hadi AA, Abu El-Nour S, Hammad A, Kamel Z, Anwar M. Optimization of cultural and nutritional conditionsfor carboxymethylcellulase production by Aspergillus hortai. J Radiation Res Appl Sci. 2014;7:1:23-8. DOI: 10.1016/j.jrras.2013.11.003.Search in Google Scholar

[15] Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol. 2008;57:503-7. DOI: 10.1007/s00284-008-9276-8.Search in Google Scholar

[16] Tamada M, Kasai N, Kaetsu I. Estimation of cellulase activity based on glucose productivity. Biotechnol Bioeng. 1988;32:7:920-2. DOI: 10.1002/bit.260320712.Search in Google Scholar

[17] Xiao Z, Storms R, Tsang A. Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng. 2004:88:7:832-7. DOI: 10.1002/bit.20286.Search in Google Scholar

[18] Dąbkowska K, Mech M, Kopeć K, Pilarek M. Enzymatic activity of some industrially-applied cellulolytic enzyme preparations. Ecol Chem Eng S. 2017:24:1:9-18. DOI: 10.1515/eces-2017-0001.Search in Google Scholar

[19] Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microboil Molec Biol Rev. 2002;66:506-77. DOI: 10.1128/MMBR.66.3.506-577.2002.Search in Google Scholar

[20] Maki M, Leung KT, Qin W. The prospects of cellulose - producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci. 2009;5:500-16. DOI: 10.7150/ijbs.5.500.Search in Google Scholar

[21] Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA. Production and characterization of cellulase by Bacillus pumilus EB3. Int J Eng Technol. 2006;3:1:47-53. http://www.ijet.feiic.org/journals/J-2006-V1005.pdfSearch in Google Scholar

[22] Lugani Y, Singla R, Sooch BS. Optimization of cellulase production from newly isolated Bacillus sp. Bioprocess Biotech. 2015;5:11:264. DOI: 10.4172/2155-9821.1000264.Search in Google Scholar

[23] Manfredi AP, Pisa1 JH, Valdeón DH, Perotti NI, Martínez MA. Synergistic effect of simple sugars and carboxymethylcellulose on the production of a cellulolytic cocktail from Bacillus sp. AR03 and enzyme activity characterization. Appl Biochem Biotechnol. 2016;179:16-32. DOI: 10.1007/s12010-015-1976-5.Search in Google Scholar

[24] Karim A, Nawaz MA, Aman A, Ali Ul Qader S. Hyper production of cellulose degrading endo (1,4) β-D-glucanase from Bacillus licheniformis KIBGE-IB2. J Radiation Res Appl Sci. 2014;7:1:23-8. DOI: 10.1016/j.jrras.2013.11.003.Search in Google Scholar

[25] Grata K, Rombel-Bryzek A, Ziembik Z. Bacillus subtilis BS-2 and peppermint oil as biocontrol agents against Botrytis cinerea. Ecol Chem Eng S. 2019;26:3:597-607. DOI: 10.1515/eces-2019-0044.Search in Google Scholar

[26] Liang Y, Zhang Z, Wu M, Wu Y, Feng JX. Isolation, screening and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Resh Int. 2014;1-13. ID 512497. DOI: 10.1155/2014/512497.Search in Google Scholar

[27] Irfan M, Safdar A, Syed Q, Nadeem M. Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity. Turk J Biochem. 2012;37:3:287-93. DOI: 0.5505/tjb.2012.09709.Search in Google Scholar

[28] Poulsen H, Willink FW, Ingvorsen K. Aerobic and anaerobic cellulase production by Cellulomonas uda. Arch Microbiol. 2016;198:725-35. DOI: 10.1007/s00203-016-1230-8.Search in Google Scholar

[29] Berlin A. No arriers to cellulose breakdown. Science. 2013;342:6165;1454-6. DOI: 10.1126/science.1247697.Search in Google Scholar

[30] Andlar M, Rezic T, Marđetko N, Kracher D, Ludwig R, Santek B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci. 2018;18:768-78. DOI: 10.1002/elsc.201800039.Search in Google Scholar

[31] Zhang XZ, Zhang YHP. Cellulases: charecteristics, sources, production, and applications. In: Yang ST, El-Enshasy HA, Thongchual N. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. Hoboken. New Jersey: John Wiley Sons; 2013; 131-46. ISBN: 9780470541951.Search in Google Scholar

[32] Yin LJ, Lin HH, Xiao ZR. Purification and characterization of a cellulase from Bacillus subtilis YI1. J Marine Sci Technol. 2010:18:3:466-71. https://jmst.ntou.edu.tw/marine/18-3/466-471.pdfSearch in Google Scholar

[33] Thapa S, Mishra J, Arora N, Mishra P, Li H, O’Hair J, et al. Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. Rev Environ Sci Biotechnol. 2020;19:621-48. DOI: 10.1007/s11157-020-09536-y.Search in Google Scholar

[34] Orji FA, Dike EN, Lawal AK, Sadiq AO, Suberu Y, Famotemi AC, et al. Properties of Bacillus species cellulase produced using cellulose from brewers spent grain (BSG) as substrate. Adv Biosci Biotechnol. 2016;7:142-8. DOI: 10.4236/abb.2016.73013.Search in Google Scholar

[35] Chantarasiri A. Aquatic Bacillus cereus JD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egyptian J Aquatic Res. 2015;41(3):257-64. DOI: 10.1016/j.ejar.2015.08.003.Search in Google Scholar

[36] Coronado-Ruiz C, Avendaño R, Escudero-Leyva E, Conejo-Barboza G, Chaverri P, Chavarría M. Two new cellulolytic fungal species isolated from a 19th-century art collection. Scientific Reports. 2018;8:7492. DOI: 10.1038/s41598-018-24934-7.Search in Google Scholar

[37] Sunitha VH, Nirmala Dev D, Srinivas C. Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J Agri Sci. 2013;9(1):1-9. DOI: 10.5829/idosi.wjas.2013.9.1.72148.Search in Google Scholar

[38] Gohel HR, Contractor CN, Ghosh SK, Braganza VJ. A comparative study of various staining techniques for determination of extra cellular cellulase activity on Carboxymethylcellulose (CMC) agar plates. Int J Curr Microbiol App Sci. 2014;3(5):261-6. https://www.ijcmas.com/vol-3-5/Hardik%20R.%20Gohel,%20et%20al.pdf.Search in Google Scholar

[39] Oliveira LRC, Barbosa JB, Martins MLL, Martins MA. Extracellular production of avicelase by the thermophilic soil bacterium Bacillus sp. SMIA-2. Acta Scien. Biol Sci. 2014;36(2);215-22. DOI: 10.4025/actascibiolsci.v36i2.17827.Search in Google Scholar

[40] Kim YK, Lee SC, Cho YY, Oh HJ, Ko YH. Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. ISRN Microbiol. 2012;650563. DOI: 10.5402/2012/650563.Search in Google Scholar

[41] Ferbiyanto A, Rusmana I, Raffiudin R. Charectarization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. Hayati J Life Sci. 2015:22(5):197-200. DOI: 10.1016/j.hjb.2015.07.001.Search in Google Scholar

[42] Florencio C, Couri S, Farinas C. Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Res. 2012:793708-15. DOI: 10.1155/2012/793708.Search in Google Scholar

[43] Ray RR. Microbial avicelase: an overview. Bull Environ Pharmacol Life Sci. 2015;4(4):3-13. http://bepls.com/march_2015/2.pdf.Search in Google Scholar

[44] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959; 31(3):426-8. DOI: 10.1021/ac60147a030.Search in Google Scholar

[45] Ghose TK. Measurement of cellulase activities. Pure Appl Chem. 1987;59(2):257-68. DOI: 10.1351/pac198759020257.Search in Google Scholar

[46] Marsden WL, Gray PP, Nippard GJ, Quinlan MR. Evaluation of the DNS method for analysing lignocellulosic hydrolysates. J Chem Technol Biotechnol. 1982;32:7-12. DOI: 10.1002/jctb.5030320744.Search in Google Scholar

[47] McKee L. Measuring enzyme kinetics of glycoside hydrolases using the 3,5-dinitrosalicylic acid assay. In: Wade Abbott D, Lammerts van Bueren A, editors. Protein-Carbohydrate Interactions. Methods and Protocols. New York, NY: Humana Press; 2017; 27-36. DOI: 10.1007/978-1-4939-6899-2.Search in Google Scholar

[48] Khoshnevisan K, Bordbar AK, Zare D, Davoodi D, Noruzi M, Barkhi M, et al. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of activity and stability. Chem Eng J. 2011;171(2):669-73. DOI: 10.1016/j.cej.2011.04.039.Search in Google Scholar

[49] Yub X, Liua Y, Cuia Y, Chenga Q, Zhanga Z, Lua JH, et al. Measurement of filter paper activities of cellulase with microplate-based assay. J Biol Sci. 2015;44(1):S93-8. DOI: 10.1016/j.sjbs.2015.06.018.Search in Google Scholar

[50] Akhtar N, Sharma A, Deka D, Jawed M, Goyal D, Goyald A. Characterization of cellulase producing Bacillus sp. for effective degradation of leaf litter biomass. Environ Progr Sust Ener. 2012;32(4):1195-201. DOI: 10.1002/ep.11726.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo