Open Access

COVID-19 Confirmed Cases Prediction in China Based on Barnacles Mating Optimizer-Least Squares Support Vector Machines


1. Bullock, J., A. Luccioni, K. H. Pham, C. S. N. Lam, M. Luengo Oroz. Mapping the Landscape of Artificial Intelligence Applications against COVID-19. – Journal of Artificial Intelligence Research., Vol. 69, 2020, pp. 807-845.10.1613/jair.1.12162 Search in Google Scholar

2. Hajirahimi, Z., M. Khashei. Hybrid Structures in Time Series Modeling and Forecasting: A Review. – Engineering Applications of Artificial Intelligence, Vol. 86, 2019, pp. 83-106.10.1016/j.engappai.2019.08.018 Search in Google Scholar

3. Statistics and Research Coronavirus (COVID-19) Vaccinations. 2021. Search in Google Scholar

4. Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. – Knowledge-Based Systems., Vol. 89, 2015, pp. 228-249.10.1016/j.knosys.2015.07.006 Search in Google Scholar

5. Huang, G., L. Wu, J. Fan, X. Ma, H. Zhou, W. Zeng. Hybrid Extreme Learning Machine with Meta-Heuristic Algorithms for Monthly Pan Evaporation Prediction. – Computers and Electronics in Agriculture, Vol. 168, 2020, No 105115, pp. 1-12.10.1016/j.compag.2019.105115 Search in Google Scholar

6. Milan, S. T., L. Rajabion, H. Ranjbar, N. J. Navimipour. Nature Inspired Meta-Heuristic Algorithms for Solving the Load-Balancing Problem in Cloud Environments. – Computers and Operations Research, Vol. 110, 2019, pp. 159-187.10.1016/j.cor.2019.05.022 Search in Google Scholar

7. Geraili, A., P. Sharma, J. A. Romagnoli. A Modeling Framework for Design of Nonlinear Renewable Energy Systems through Integrated Simulation Modeling and Metaheuristic Optimization: Applications to Biorefineries. – Computers and Chemical Engineering., Vol. 61, 2014, No 11, pp. 102-117.10.1016/j.compchemeng.2013.10.005 Search in Google Scholar

8.Ghasemi, A., M. Gheydi, M. J. Golkar, M. Eslami. Modeling of Wind/Environment/Economic Dispatch in Power System and Solving via an Online Learning Meta-Heuristic Method. – Applied Soft Computing, Vol. 43, 2016, pp. 454-468.10.1016/j.asoc.2016.02.046 Search in Google Scholar

9. Zhang, P., H.-N. Wu, R.-P. Chen, T. H. T. Chan. Hybrid Meta-Heuristic and Machine Learning Algorithms for Tunneling-Induced Settlement Prediction: A Comparative Study. – Tunneling and Underground Space Technology, Vol. 99, 2020, No 103383, pp. 1-13.10.1016/j.tust.2020.103383 Search in Google Scholar

10. Gocken, M., M. Ozcalici, A. Boru, A. T. Dosdogru. Integrating Metaheuristics and Artificial Neural Networks for Improved Stock Price Prediction. – Expert Systems with Application, Vol. 44, 2016, No February, pp. 320-331.10.1016/j.eswa.2015.09.029 Search in Google Scholar

11. Somu, N., MR G. Raman, K. Ramamritham. A Hybrid Model for Building Energy Consumption Forecasting Using Long Short Term Memory Networks. – Applied Energy, Vol. 261, 2020, No 114131, pp. 1-19.10.1016/j.apenergy.2019.114131 Search in Google Scholar

12. Haupt, R. L., S. E. Haupt. Practical Genetic Algorithms. Second Ed. New Jersey, John Wiley & Sons, Inc., 2004.10.1002/0471671746 Search in Google Scholar

13. Storn, R., K. Price. Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. – Journal of Global Optimization, Vol. 11, 1997, pp. 341-359.10.1023/A:1008202821328 Search in Google Scholar

14. Xin Yao, G. L., Yong Liu. Evolutionary Programming Made Faster. – IEEE Transactions on Evolutionary Computation, Vol. 3, 1999, No 2, pp. 82-102.10.1109/4235.771163 Search in Google Scholar

15. Kennedy, J., R. Eberhart. Particle Swarm Optimization. – In: Proc. of International Conference of Neural Networks, December 1995, pp. 1942-1948. Search in Google Scholar

16. Dorigo, M., T. Stutzle. Ant Colony Optimization. Cambridge, MIT Press, 2004.10.7551/mitpress/1290.001.0001 Search in Google Scholar

17. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Erciyes University, Engineering Faculty, Computer Engeneering Department, 2005. Search in Google Scholar

18. Mirjalili, S., S. M. Mirjalili, A. Lewis. Grey Wolf Optimizer. – Advances in Engineering Software, Vol. 69, 2014, pp. 46-61.10.1016/j.advengsoft.2013.12.007 Search in Google Scholar

19. Rashedi, E., H. Nezahabadi-Pour, S. Saryazdi. GSA: A Gravitational Search Algorithm. – Information Sciences, Vol. 179, 2009, pp. 2232-2248.10.1016/j.ins.2009.03.004 Search in Google Scholar

20. Osman, I. E., K. Erol. A New Optimization Method: Big Bang-Big Crunch. – Advances in Engineering Software, Vol. 37, 2006, No 2, pp. 106-111.10.1016/j.advengsoft.2005.04.005 Search in Google Scholar

21. Hatamlou, A. Black Hole: A New Heuristic Optimization Approach for Data Clustering. – Information Sciences, Vol. 222, 2013, No 10, pp. 175-184.10.1016/j.ins.2012.08.023 Search in Google Scholar

22. Kang Seok Lee, Zong Woo Geem. A New Meta-Heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice. – Compututer Methods in Applied Mechanics Engineering, Vol. 194, 2005, No 36-38, pp. 3902-3933.10.1016/j.cma.2004.09.007 Search in Google Scholar

23. Moghdani, R., S. Khodaram. Volleyball Premier League Algorithm. – Applied Soft Computing, Vol. 64, 2018, No March, pp. 161-185.10.1016/j.asoc.2017.11.043 Search in Google Scholar

24. Sulaiman, M. H.,, Z. Mustaffa, M. M. Saari, H. Daniyal. Barnacles Mating Optimizer: A New Bio-Inspired Algorithm for Solving Engineering Optimization Problems. – Engineering Applications of Artificial Intelligence, Vol. 87, 2020, No 103330, pp. 1-13.10.1016/j.engappai.2019.103330 Search in Google Scholar

25. Parbat, D., M. Chakraborty. A Python Based Support Vector Regression Model for Prediction of COVID19 Cases in India. – Chaos, Solitons & Fractal, Vol. 138, 2020, No 109942, pp. 1-5.10.1016/j.chaos.2020.109942726146532834576 Search in Google Scholar

26. De Oliveira, L. S., S. B. Gruetzmacher, J. P. Teixeira. COVID-19 Time Series Prediction. – Procedia Computer Science, Vol. 181, 2021, pp. 973-980.10.1016/j.procs.2021.01.254 Search in Google Scholar

27. Jain, A., T. Sukhdeve, H. Gadia, D. S. P. Sahu, S. Verma. COVID19 Prediction Using Time Series Analysis. – In: Proc. of International Conference on Artificial Intelligence and Smart Systems (ICAIS’21), 2021, pp. 1599-1606.10.1109/ICAIS50930.2021.9395877 Search in Google Scholar

28. Didem Guleryuz. Forecasting Outbreak of COVID-19 in Turkey; Comparison of Box-Jenkins, Brown’s Exponential Smoothing and Long Short-Term Memory Models. – Process Safety and Environmental Protection, Vol. 149, 2021, No May, pp. 927-935.10.1016/j.psep.2021.03.032798345633776248 Search in Google Scholar

29. Barazandeh, M., C. S. Davis, C. J. Neufeld, D. W. Coltman, A. R. Palmer. Something Darwin Didn’t Know About Barnacles: Spermcast Mating in a Common Stalked Species. – In: Proc. of Royal Society B Biological Sciences, 2013. Search in Google Scholar

30. Yusa, Y., M. Yoshikawa, J. Kitaura, M. Kawane, Y. Ozaki, S. Yamato, J. T. Høeg. Adaptive Evolution of Sexual Systems in Pedunculate Barnacles. – In: Proc. of the Royal Society B: Biological Sciences, Vol. 279, 2012, pp. 959-966. Search in Google Scholar

31. Suykens, J. A. K., T. van Gestel, J. de Brabanter, B. de Moor, J. Vandewalle. Least Squares Support Vector Machines. Leuven, Belgium, World Scientific Publishing Co. Pte. Ltd., 2002.10.1142/5089 Search in Google Scholar

32. Coronavirus Disease (COVID-2019) Situation Reports, 2020. Search in Google Scholar

Publication timeframe:
4 times per year
Journal Subjects:
Computer Sciences, Information Technology