Open Access

A Recursive and Parallelized Dynamic Programming Implementation of Hard Merkle-Hellman Knapsack System for Public Key Cryptography


Cite

1. Malik, M., S. Malhotra, N. Prasanth. Time Improvement of Smith-Waterman Algorithm Using OpenMP and SIMD. – FTNCT 2019, CCIS 1206, 2020, pp. 686-697. https://doi.org/10.1007/978-981-15-4451-4_5410.1007/978-981-15-4451-4_54 Search in Google Scholar

2. Ping, Y., B. Wang, S. Tian, J. Zhou, H. Ma. Towards aProbabilistic Knapsack Public-Key. – Cryptosystem with High Density, Information, Vol. 10, 2019, No 2, 75. https://doi.org/10.3390/info1002007510.3390/info10020075 Search in Google Scholar

3. Buayen, P., J. Werapun. Parallel Time–Space Reduction by Unbiasedfiltering for Solving the 0/1-Knapsack Problem. – Journal of Parallel and Distributed Computing, Vol. 122, December 2018, pp. 195-208. https://doi.org/10.1016/j.jpdc.2018.08.00310.1016/j.jpdc.2018.08.003 Search in Google Scholar

4. Liu, J., J. Bi, S. Xu. An Improved Attack on the Basic Merkle-Hellman KnapsackCryptosystem. – IEEE Access, Vol. 7, 2019, pp. 59388-59393. DOI:10.1109/ACCESS.2019.2913678.10.1109/ACCESS.2019.2913678 Search in Google Scholar

5. Slonkina, I., M. Kupriyashin, G. Borzunov. Analysis and Optimization of the PackingTree Search Algorithm for the Knapsack Problem. – In: Proc. of IEEE Conference of Russian YoungResearchers in Electrical and Electronic Engineering (EIConRus’19), Saint Petersburg and Moscow, Russia, 2019, pp. 1811-1815. DOI: 10.1109/EIConRus.2019.8657309.10.1109/EIConRus.2019.8657309 Search in Google Scholar

6. Zhou, Y. Q., R. Zhao. Solving Large-Scale 0-1 Knapsack Problem by the Socialspideroptimisation Algorithm. – January International Journal of Computing Science and Mathematics, Vol. 9, 2018, No 5, pp. 433-441. DOI: 10.1504/IJCSM.2018.095497.10.1504/IJCSM.2018.095497 Search in Google Scholar

7. Baocang, wan, Yupu hu. Quadratic Compact Knapsack Public-Key Cryptosystem. – Computers & Mathematics with Applications, Vol. 59, 2019, No 1, pp. 194-206. https://doi.org/10.1016/j.camwa.2009.08.03110.1016/j.camwa.2009.08.031 Search in Google Scholar

8. Paar, C., J. Pelzl. Public-Key Cryptosystems Based on the Discrete Logarithm Problem. – In: Understanding Cryptography. Berlin, Heidelberg, Springer, 2010. https://doi.org/10.1007/978-3-642-04101-3_810.1007/978-3-642-04101-3_8 Search in Google Scholar

9. Nguyễn, P. Q., J. Stern. Adapting Density Attacks to Low-Weight Knapsacks. – In: B. Roy, Ed. Advances in Cryptology – ASIACRYPT 2005. ASIACRYPT 2005. Lecture Notes in Computer Science. Vol. 3788. Berlin, Heidelberg, Springer, 2005. https://doi.org/10.1007/11593447_310.1007/11593447_3 Search in Google Scholar

10. Okamoto, T., K. Tanaka, S. Uchiyama. Quantum Public-Key Cryptosystems. – In: Proc. of 20th Annual International Cryptology Conference on Advances in Cryptology (CRYPTO ‘00). Berlin, Heidelberg, Springer-Verlag, 2000, pp. 147-165.10.1007/3-540-44598-6_9 Search in Google Scholar

11. Cai, J. Y., T. W. Cusick. A Lattice-Based Public-Key Cryptosystem. – In: S. Tavares, H. Meijer, Eds. Selected Areas in Cryptography. SAC 1998. Lecture Notes in ComputerScience. Vol. 1556. Berlin, Heidelberg, Springer, 1999. https://doi.org/10.1007/3-540-48892-8_1810.1007/3-540-48892-8_18 Search in Google Scholar

12. Raghunandan, K. R., A. Ganesh, S. Surendra, K. Bhavya. Key Generation Using Generalized Pell’s Equation in Public Key Cryptography Based on the Prime Fake Modulus Principle to Image Encryption and Its Security Analysis. – Cybernetics and Information Technologies, Vol. 20, 2020, No 3.10.2478/cait-2020-0030 Search in Google Scholar

13. https://www.wikiwand.com/en/Merkle%E2%80%93Hellman_knapsack_cryptosystem Search in Google Scholar

eISSN:
1314-4081
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Computer Sciences, Information Technology