Multi-target tracking is a challenge due to the variable number of targets and the frequent interaction between targets in complex dynamic environments. This paper presents a multi-target tracking algorithm based on bipartite graph matching. Unlike previous approaches, the method proposed considers the target tracking as a bipartite graph matching problem where the nodes of the bipartite graph correspond to the targets in two neighboring frames, and the edges correspond to the degree of the similarity measure between the targets in different frames. Finding correspondence between the targets is formulated as a maximal matching problem which can be solved by the dynamic Hungarian algorithm. Then, merging and splitting of the targets detection is proposed, the candidate occlusion region is predicted according to the overlapping between the bounding boxes of the interacting targets to handle the mutual occlusion problem. The extensive experimental results show that the algorithm proposed can achieve good performance on dynamic target interactions compared to state-of-the-art methods.

Publication timeframe:
4 times per year
Journal Subjects:
Computer Sciences, Information Technology