Open Access

Virtual Element Methods for three-dimensional Hellinger-Reissner elastostatic problems


Cite

1. L. Beir˜ao da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, Basic principles of Virtual Element Methods, Mathematical Models and Methods in Applied Sciences, vol. 23, pp. 119–214, 2013.10.1142/S0218202512500492 Search in Google Scholar

2. L. Beir˜ao da Veiga, K. Lipnikov, and G. Manzini, The mimetic finite difference method for elliptic problems, vol. 11 of Modeling, Simulation and Applications. Springer, 2014.10.1007/978-3-319-02663-3 Search in Google Scholar

3. D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013.10.1007/978-3-642-36519-5 Search in Google Scholar

4. E. Artioli, S. de Miranda, C. Lovadina, and L. Patruno, A stress/displacement virtual element method for plane elasticity problems, Comp. Methods Appl. Mech. Engrg., vol. 325, pp. 155–174, 2017.10.1016/j.cma.2017.06.036 Search in Google Scholar

5. E. Artioli, S. de Miranda, C. Lovadina, and L. Patruno, A family of virtual element methods for plane elasticity problems based on the hellinger-reissner principle, Comp. Methods Appl. Mech. Engrg., vol. 340, pp. 978–999, 2018.10.1016/j.cma.2018.06.020 Search in Google Scholar

6. M. Visinoni, A family of three-dimensional virtual elements for hellinger-reissner elasticity problems, in preparation. Search in Google Scholar

7. B. F. De Veubeke and O. C. Zienkiewicz, Displacement and equilibrium models in the finite element method, International Journal for Numerical Methods in Engineering, vol. 52, no. 3, pp. 287–342, 2001.10.1002/nme.339 Search in Google Scholar

8. D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 19, pp. 7–32, 1985.10.1051/m2an/1985190100071 Search in Google Scholar

9. F. Dassi, C. Lovadina, and M. Visinoni, A three-dimensional Hellinger-Reissner virtual element method for linear elasticity problems, Computer Methods in Applied Mechanics and Engineering, vol. 364, p. 112910, 2020.10.1016/j.cma.2020.112910 Search in Google Scholar

10. D. Braess, Finite elements. Theory, fast solvers, and applications in elasticity theory. Cambridge University Press, third ed., 2007.10.1017/CBO9780511618635 Search in Google Scholar

11. D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numerische Mathematik, vol. 92, pp. 401–419, 2002.10.1007/s002110100348 Search in Google Scholar

12. D. N. Arnold, G. Awanou, and R. Winther, Finite elements for symmetric tensors in three dimensions, Mathematics of Computation, vol. 77, pp. 1229–1251, 2008.10.1090/S0025-5718-08-02071-1 Search in Google Scholar

13. L. Beir˜ao da Veiga, F. Brezzi, L. D. Marini, and A. Russo, The hitchhiker’s guide to the virtual element method, Mathematical Models and Methods in Applied Sciences, vol. 24, no. 8, pp. 1541–1573, 2014.10.1142/S021820251440003X Search in Google Scholar

14. F. Dassi, C. Lovadina, and M. Visinoni, Hybridization of the virtual element method for linear elasticity problems, Mathematical Models and Methods in Applied Sciences, vol. 31, no. 14, pp. 2979–3008, 2021.10.1142/S0218202521500676 Search in Google Scholar

15. B. Ayuso, K. Lipnikov, and G. Manzini, The nonconforming virtual element method, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 50, no. 3, pp. 879–904, 2016.10.1051/m2an/2015090 Search in Google Scholar

16. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelmanm, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Web page. https://www.mcs.anl.gov/petsc, 2019. Search in Google Scholar

17. L. Beir˜ao da Veiga, F. Brezzi, and L. D. Marini, Virtual Elements for linear elasticity problems, SIAM J. Numer. Anal., vol. 51, pp. 794–812, 2013.10.1137/120874746 Search in Google Scholar

18. L. Beir˜ao da Veiga, C. Lovadina, and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 51, no. 2, pp. 509–535, 2017.10.1051/m2an/2016032 Search in Google Scholar

19. L. Beir˜ao da Veiga, D. Mora, and G. Vacca, The Stokes complex for virtual elements with application to Navier-Stokes flows, Journal of Scientific Computing, vol. 81, no. 2, pp. 990–1018, 2019.10.1007/s10915-019-01049-3 Search in Google Scholar

20. D. Arnold, Finite Element Exterior Calculus, vol. 93 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 2018.10.1137/1.9781611975543 Search in Google Scholar

21. D. Arnold, D. Boffi, and F. Bonizzoni, Finite element differential forms on curvilinear cubic meshes and their approximation properties, Numerische Mathematik, vol. 129, no. 1, pp. 1–20, 2015.10.1007/s00211-014-0631-3 Search in Google Scholar

22. F. Bonizzoni and G. Kanschat, H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes, Calcolo, vol. 58, no. 18, 2021.10.1007/s10092-021-00409-6859168434803174 Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics