Open Access

Do we use methylation of NFATC1 and FOS genes as a biomarker for postmenopausal osteoporosis?

 and    | Mar 23, 2021

Cite

López-Rodríguez C, Aramburu J, Jin L, Rakeman AS, Michino M, et al. Bridging the NFAT and NF-kappaB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity. 2001; 15(1): 47-58.López-RodríguezCAramburuJJinLRakemanASMichinoMet alBridging the NFAT and NF-kappaB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stressImmunity20011514758Search in Google Scholar

Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003; 17(18): 2205-232.HoganPGChenLNardoneJRaoATranscriptional regulation by calcium, calcineurin, and NFATGenes Dev20031718220523210.1101/gad.1102703Search in Google Scholar

Wu H, Peisley A, Graef IA, Crabtree GR. NFAT signaling and the invention of vertebrates. Trends Cell Biol. 2007; 17(6): 251-260.WuHPeisleyAGraefIACrabtreeGRNFAT signaling and the invention of vertebratesTrends Cell Biol200717625126010.1016/j.tcb.2007.04.006Search in Google Scholar

Pan MG, Xiong Y, Chen F. NFAT gene family in inflammation and cancer. Curr Mol Med. 2013; 13(4): 543-554.PanMGXiongYChenFNFAT gene family in inflammation and cancerCurr Mol Med201313454355410.2174/1566524011313040007Search in Google Scholar

Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002; 3(6): 889-901.TakayanagiHKimSKogaTNishinaHIsshikiMYoshidaHet alInduction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclastsDev Cell20023688990110.1016/S1534-5807(02)00369-6Search in Google Scholar

Matsumoto M, Kogawa M, Wada S, Takayanagi H, Tsujimoto M, Katayama S, et al. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem. 2004; 279(44): 45969-45979.MatsumotoMKogawaMWadaSTakayanagiHTsujimotoMKatayamaSet alEssential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1J Biol Chem200427944459694597910.1074/jbc.M40879520015304486Search in Google Scholar

Kim K, Kim JH, Lee J, Jin HM, Lee SH, Fisher DE, et al. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem. 2005; 280(42): 35209-35216.KimKKimJHLeeJJinHMLeeSHFisherDEet alNuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesisJ Biol Chem200528042352093521610.1074/jbc.M50581520016109714Search in Google Scholar

Chen S, Pan M. NFAT signaling and bone homeostasis. J Hematol Thromb Dis. 2013; 1(1): 102-108.ChenSPanMNFAT signaling and bone homeostasisJ Hematol Thromb Dis201311102108Search in Google Scholar

Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation. J Bone Metab. 2014; 21(4): 233-241.KimJHKimNRegulation of NFATc1 in osteoclast differentiationJ Bone Metab201421423324110.11005/jbm.2014.21.4.233425504325489571Search in Google Scholar

Huang H, Chang EJ, Ryu J, Lee ZH, Lee Y, Kim HH. Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway. Biochem Biophys Res Commun. 2006; 351(1): 99-105.HuangHChangEJRyuJLeeZHLeeYKimHHInduction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathwayBiochem Biophys Res Commun200635119910510.1016/j.bbrc.2006.10.01117052691Search in Google Scholar

Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, et al. c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. 1994; 266(5184): 443-448.GrigoriadisAEWangZQCecchiniMGHofstetterWFelixRFleischHAet alc-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodelingScience1994266518444344810.1126/science.79396857939685Search in Google Scholar

Marini F, Cianferotti L, Brandi ML. Epigenetic mechanisms in bone biology and osteoporosis: Can they drive therapeutic choices? Int J Mol Sci. 2016; 17(8): 1329.MariniFCianferottiLBrandiMLEpigenetic mechanisms in bone biology and osteoporosis: Can they drive therapeutic choices?Int J Mol Sci2016178132910.3390/ijms17081329500072627529237Search in Google Scholar

Wang J, Zhang W, Yu C, Zhang X, Zhang H, Guan Q, et al. Follicle stimulating hormone increases the risk of postmenopausal osteoporosis by stimulating osteoclast differentiation. PLoS One. 2015; 10(8): e0134986.WangJZhangWYuCZhangXZhangHGuanQet alFollicle stimulating hormone increases the risk of postmenopausal osteoporosis by stimulating osteoclast differentiationPLoS One2015108e013498610.1371/journal.pone.0134986452468326241313Search in Google Scholar

Trošt Z, Trebše R, Preželj J, Komadina R, Logar DB, Marc J. A microarray based identification of osteoporosis-related genes in primary culture of human osteoblasts. Bone. 2010; 46(1): 72-80.TroštZTrebšeRPreželjJKomadinaRLogarDBMarcJA microarray based identification of osteoporosis-related genes in primary culture of human osteoblastsBone2010461728010.1016/j.bone.2009.09.01519781675Search in Google Scholar

Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B, Inoue S. Vitamin K2 induces phosphorylation of protein kinase A and expression of novel target genes in osteoblastic cells. J Mol Endocrinol. 2007; 39(4): 239-247.IchikawaTHorie-InoueKIkedaKBlumbergBInoueSVitamin K2 induces phosphorylation of protein kinase A and expression of novel target genes in osteoblastic cellsJ Mol Endocrinol200739423924710.1677/JME-07-004817909264Search in Google Scholar

Liu YZ, Dvornyk V, Lu Y, Shen H, Lappe JM, Recker RR, et al. A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J Biol Chem. 2005; 280(32): 29011-29016.LiuYZDvornykVLuYShenHLappeJMReckerRRet alA novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytesJ Biol Chem200528032290112901610.1074/jbc.M50116420015965235Search in Google Scholar

Leclerc N, Luppen CA, Ho VV, Nagpal S, Hacia JG, Smith E, et al. Gene expression profiling of glucocorticoid-inhibited osteoblasts. J Mol Endocrinol. 2004; 33(1): 175-193.LeclercNLuppenCAHoVVNagpalSHaciaJGSmithEet alGene expression profiling of glucocorticoid-inhibited osteoblastsJ Mol Endocrinol200433117519310.1677/jme.0.033017515291752Search in Google Scholar

Chen XD, Xiao P, Lei SF, Liu YZ, Guo YF, Deng FY, et al. Gene expression profiling in monocytes and SNP association suggest the importance of the STAT1 gene for osteoporosis in both Chinese and Caucasians. J Bone Miner Res. 2010; 25(2): 339-355.ChenXDXiaoPLeiSFLiuYZGuoYFDengFYet alGene expression profiling in monocytes and SNP association suggest the importance of the STAT1 gene for osteoporosis in both Chinese and CaucasiansJ Bone Miner Res201025233935510.1359/jbmr.090724315338919594299Search in Google Scholar

Kalkan R, Altarda M, Tulay P, Tosun Ö. The interaction between ESRRA and PTH gene methylation and body mass index in post-menopausal cases. Cyprus J Med Sci. 2019; 4(3): 247-250.KalkanRAltardaMTulayPTosunÖThe interaction between ESRRA and PTH gene methylation and body mass index in post-menopausal casesCyprus J Med Sci20194324725010.5152/cjms.2019.990Search in Google Scholar

Raje MM, Mhaske ST, Ghosh P, Wani RM, Ashma R. Differential gene expression pattern in osteoclast precursor cells of Indian postmenopausal women with and without osteoporosis: A microarray based study. J Bone Res. 2017; 5(3): 185-192.RajeMMMhaskeSTGhoshPWaniRMAshmaRDifferential gene expression pattern in osteoclast precursor cells of Indian postmenopausal women with and without osteoporosis: A microarray based studyJ Bone Res20175318519210.4172/2572-4916.1000185Search in Google Scholar

Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010; 285(33): 25103-25108.RaggattLJPartridgeNCCellular and molecular mechanisms of bone remodelingJ Biol Chem201028533251032510810.1074/jbc.R109.041087291907120501658Search in Google Scholar

Riggs BL, Khosla S, Melton LJ 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002; 23(3): 279-302.RiggsBLKhoslaSMeltonLJ 3rdSex steroids and the construction and conservation of the adult skeletonEndocr Rev200223327930210.1210/edrv.23.3.046512050121Search in Google Scholar

Boroňová I, Bernasovská J, Mačeková S, Petrejčíková E, Tomková Z, Kľoc J, et al. TNFRSF11B gene polymorphisms, bone mineral density, and fractures in Slovak postmenopausal women. J Appl Genet. 2015; 56(1): 57-63.BoroňováIBernasovskáJMačekováSPetrejčíkováETomkováZKľocJet alTNFRSF11B gene polymorphisms, bone mineral density, and fractures in Slovak postmenopausal womenJ Appl Genet2015561576310.1007/s13353-014-0247-425323794Search in Google Scholar

Gavali S, Gupta MK, Daswani B, Wani MR, Sirdeshmukh R, Khatkhatay MI. LYN, a key mediator in estrogen-dependent suppression of osteoclast differentiation, survival, and function. Biochim Biophys Acta Mol Basis Dis. 2019; 1865(3): 547-557.GavaliSGuptaMKDaswaniBWaniMRSirdeshmukhRKhatkhatayMILYN, a key mediator in estrogen-dependent suppression of osteoclast differentiation, survival, and functionBiochim Biophys Acta Mol Basis Dis20191865354755710.1016/j.bbadis.2018.12.01630579930Search in Google Scholar

Kim JH, Kim EY, Lee B, Min JH, Song DU, Lim JM, et al. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int J Mol Med. 2016; 37(3): 649658.KimJHKimEYLeeBMinJHSongDULimJMet alThe effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cellsInt J Mol Med201637364965810.3892/ijmm.2016.2477477109526848104Search in Google Scholar

Kim K, Lee SH, Kim JH, Choi Y, Kim N. NFATc1 induces osteoclast fusion via up-regulation of At-p6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocrinol. 2008; 22(1): 176-185.KimKLeeSHKimJHChoiYKimNNFATc1 induces osteoclast fusion via up-regulation of At-p6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP)Mol Endocrinol200822117618510.1210/me.2007-0237272575117885208Search in Google Scholar

Zhao Q, Wang X, Liu Y, He A, Jia R. FATc1: Functions in osteoclasts. Int J Biochem Cell Biol. 2010; 42(5): 576-579.ZhaoQWangXLiuYHeAJiaRFATc1: Functions in osteoclastsInt J Biochem Cell Biol201042557657910.1016/j.biocel.2009.12.01820035895Search in Google Scholar

Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell. 2006; 10(6): 771-782.WinslowMMPanMStarbuckMGalloEMDengLKarsentyGet alCalcineurin/NFAT signaling in osteoblasts regulates bone massDev Cell200610677178210.1016/j.devcel.2006.04.00616740479Search in Google Scholar

Xu J, Wu HF, Ang ESM, Yip K, Woloszyn M, Zheng MH, et al. NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev. 2009; 20(1): 7-17.XuJWuHFAngESMYipKWoloszynMZhengMHet alNF-kappaB modulators in osteolytic bone diseasesCytokine Growth Factor Rev200920171710.1016/j.cytogfr.2008.11.00719046922Search in Google Scholar

eISSN:
1311-0160
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Basic Medical Science, other