Cite

Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S., Irving G., Isard M., Kudlur M., Levenberg J., Monga R., Moore S., Murray D. G., Steiner B., Tucker P., Vasudevan V., Warden P., Wicke M., Yu Y., Zheng X., TensorFlow: a system for large-scale machine learning, In Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation (OSDI’16), USENIX Association, USA, pp. 265–283, 2016.Search in Google Scholar

Beutel D.J., Topal T., Mathur A., Qiu X., Fernandez-Marques J., Gao Y., Sani L., Li KH., Parcollet T., de Gusmão P.P., Lane ND., Flower: A friendly federated learning framework, preprint arXiv:2007.14390, 2021.Search in Google Scholar

Caldas S., Duddu S.M., Wu P., Li T., Konečný J., McMahan H.B., Smith V., Talwalkar A., Leaf: A benchmark for federated settings, arXiv preprint arXiv:1812.01097, 2018.Search in Google Scholar

Hard A., Rao K., Mathews R., Ramaswamy S., Beaufays F., Augenstein S., Eichner H., Kiddon C., Ramage D., Federated learning for mobile keyboard prediction, arXiv preprint arXiv:1811.03604, 2018.Search in Google Scholar

Hsieh K., Machine learning systems for highly-distributed and rapidly-growing data, Ph.D. Dissertation, Carnegie Mellon University, 2019.Search in Google Scholar

Jiang J. C., Kantarci B., Oktug S., Soyata T., Federated learning in smart city sensing: Challenges and opportunities, Sensors, 20(21), 6230, 2020.Search in Google Scholar

Konečný J., McMahan H.B., Yu F.X., Richtárik P., Suresh A.T., Bacon D., Federated learning: Strategies for improving communication efficiency, arXiv preprint arXiv:1610.05492. 2016.Search in Google Scholar

LeCun Y., The MNIST database of handwritten digits, http://yann.lecun.com/exdb/mnist/, 1998.Search in Google Scholar

Li L., Fan Y., Tse M., Lin KY., A review of applications in federated learning,Computers & Industrial Engineering, pp. 106854, 2020.Search in Google Scholar

Li Q., Wen Z., Wu Z., Hu S., Wang N., Li Y., Liu X., He B., A survey on federated learning systems: vision, hype, and reality for data privacy and protection, IEEE Transactions on Knowledge and Data Engineering, 2021.Search in Google Scholar

Li T., Sahu A.K., Talwalkar A., Smith V., Federated learning: Challenges, methods, and future directions,IEEE Signal Processing Magazine, vol 37, no. 3, pp. 50–60, 2020.Search in Google Scholar

Liu Y., James J.Q., Kang J., Niyato D., Zhang S., Privacy-preserving traffic flow prediction: A federated learning approach, IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7751–7763, 2020.Search in Google Scholar

Liu Y., Peng J., Kang J., Iliyasu A.M., Niyato D., Abd El-Latif A.A., A secure federated learning framework for 5G networks, IEEE Wireless Communications, vol. 27, no. 4, pp. 24–31, 2020.Search in Google Scholar

McMahan H.B., Moore E., Ramage D., Arcas B.A., Federated learning of deep networks using model averaging, arXiv, vol. abs/1602.05629, 2016.Search in Google Scholar

McMahan H.B., Moore E., Ramage D., Hampson S., y Arcas B.A., Communication-efficient learning of deep networks from decentralized data, In Artificial intelligence and statistics, pp. 1273–1282, 2017.Search in Google Scholar

Nilsson A., Smith S., Ulm G., Gustavsson E., Jirstrand M., A performance evaluation of federated learning algorithms, InProceedings of the Second Workshop on Distributed Infrastructures for Deep Learning, pp. 1–8, 2018.Search in Google Scholar

Niknam S., Dhillon HS., Reed JH., Federated learning for wireless communications: Motivation, opportunities, and challenges, IEEE Communications Magazine, vol. 58, no. 6, pp. 46–51, 2020.Search in Google Scholar

Pang G., Shen C., Cao L., Hengel A.V., Deep learning for anomaly detection: A review, ACM Computing Surveys (CSUR), vol. 54, no. 2, pp. 1–38, 2021.Search in Google Scholar

Rieke N., Hancox J., Li W., Milletari F., Roth H.R., Albarqouni S., Bakas S., Galtier M.N., Landman B.A., Maier-Hein K., Ourselin S., The future of digital health with federated learning, NPJ digital medicine, vol. 3, no. 1, pp. 1–7, 2020.Search in Google Scholar

Saputra Y.M., Hoang D.T., Nguyen D.N., Dutkiewicz E., Mueck M.D., Srikanteswara S., Energy demand prediction with federated learning for electric vehicle networks, in 2019 IEEE Global Communications Conference (GLOBECOM), IEEE, pp. 1–6, 2019.Search in Google Scholar

Tijani S.A., Ma X., Zhang R., Jiang F., Doss R., Federated Learning with Extreme Label Skew: A Data Extension Approach, In 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2021.Search in Google Scholar

Wahab O.A., Mourad A., Otrok H., Taleb T., Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems, IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1342–1397, 2021.Search in Google Scholar

Wu Q., He K., Chen X., Personalized federated learning for intelligent IoT applications: A cloud-edge based framework,IEEE Open Journal of the Computer Society, vol. 1, pp. 35–44, 2020.Search in Google Scholar

Yang T., Andrew G., Eichner H., Sun H., Li W., Kong N., Beaufays F., Applied federated learning: Improving google keyboard query suggestions, arXiv preprint arXiv:1812.02903, 2018.Search in Google Scholar

Zhang N., Wang FY., Zhu F., Zhao D., Tang S., DynaCAS: Computational experiments and decision support for ITS, IEEE Intelligent Systems, vol. 23, no. 6, pp. 19–23, 2008.Search in Google Scholar

Zhang W., Lu Q., Yu Q., Li Z., Liu Y., Lo S.K., Chen S., Xu X., Zhu L., Blockchain-based federated learning for device failure detection in industrial IoT, IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5926–5937, 2020.Search in Google Scholar

eISSN:
2537-2726
Language:
English