Cite

1. An J., Lee I., Yi, Y. (2019) The Thermal Effects of Water Immersion on Health Outcomes: An Integrative Review. Int. J. Environmental Res. Pub. Health, 16(7): 1280. Search in Google Scholar

2. Balasubramanian P., Hall D., Subramanian M. (2019) Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. GeroScience, 41: 13–24.10.1007/s11357-018-0048-5642321530519806 Search in Google Scholar

3. Blüher M. (2019) Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol., 15: 288–298.10.1038/s41574-019-0176-8 Search in Google Scholar

4. Carayannopoulos A.G., Han A., Burdenko I.N. (2020) The benefits of combining water and land-based therapy. J. Exerc. Rehab., 16(1): 20–26.10.12965/jer.1938742.371705647832161731 Search in Google Scholar

5. Chen O., Grabarnick A., Pilz-Burstein R. (2018) The effect of Watsu treatments on pain indices and on the quality of sleep in women diagnosed as fibromyalgia patients. JIPTS, 20(2): 14–24. Search in Google Scholar

6. Choi K.H., Kim J., Kwon O.S., Kim M.J., Ryu Y.H., Park J.E. (2017) Is heart rate variability (HRV) an adequate tool for evaluating human emotions? – A focus on the use of the International Affective Picture System (IAPS) Psychiatry Res., 251: 192-196.10.1016/j.psychres.2017.02.02528213189 Search in Google Scholar

7. Chouchou F., Pichot V., Costes F., Guillot M., Barthélémy J.C., Bertoletti L., Roche F. (2020) Autonomic cardiovascular adaptations to acute head-out water immersion, head-down tilt and supine position. Eur. J. Appl. Physiol., 120: 337–347.10.1007/s00421-019-04278-4 Search in Google Scholar

8. Codrons E., Bernardi N.F., Vandoni M., Bernardi L. (2014) Spontaneous Group Synchronization of Movements and Respiratory Rhythms. PLoS ONE 9(9): e107538.10.1371/journal.pone.0107538416264325216280 Search in Google Scholar

9. Cohen J. (1988) Statistical power analysis for the behavioral sciences, 2nd edition. Hillsdale, NJ: Erlbaum. Search in Google Scholar

10. Constantini K., Stickford A., Bleich J.L., Mannheimer P.D., Levine B.D., Chapman, R. F. (2018) Synchronizing Gait with Cardiac Cycle Phase Alters Heart Rate Response during Running. Med. Sci. Sport Exerc., 50(5): 1046–1053.10.1249/MSS.0000000000001515602358929240004 Search in Google Scholar

11. Dull H. (2008) Watsu®: Freeing the Body in Water, Traf-ford Publishing, Victoria, Canada. Search in Google Scholar

12. Esco M.R., Flatt A.A., Williford H.N. (2017) Postexercise heart rate variability following treadmill and cycle exercise: a comparison study. Clin. Physiol. Funct. Imaging, 37: 322–327.10.1111/cpf.12308 Search in Google Scholar

13. Elbers J., McCraty R. (2020) HeartMath approach to self-regulation and psychosocial well-being. J. Psychol. Afr., 30(1): 69–79.10.1080/14330237.2020.1712797 Search in Google Scholar

14. Gatti E., Calzolari E., Maggioni E., Obrist M. (2018) Emotional ratings and skin conductance response to visual, auditory and haptic stimuli. Sci. Data 5: 180120.10.1038/sdata.2018.120 Search in Google Scholar

15. Georgiou K., Larentzakis A.V., Khamis N.N., Alsuhaibani G.I., Alaska Y.A., Giallafos E.J. (2018) Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review, Folia Med., 60(1): 7-20.10.2478/folmed-2018-0012 Search in Google Scholar

16. Godfrey K.M., Juarascio A., Manasse S., Minassian A., Risbrough V., Afari N. (2019) Heart rate variability and emotion regulation among individuals with obesity and loss of control eating. Physiol. Behav., 199: 73–78.10.1016/j.physbeh.2018.11.009 Search in Google Scholar

17. Hall J.E., do Carmo J.M., da Silva A.A., Wang Z., Hall M.E. (2015) Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ. Res., 116(6): 991–1006.10.1161/CIRCRESAHA.116.305697436308725767285 Search in Google Scholar

18. Hernando D., Garatachea N., Almeida R., Casajús J.A., Bailón R. (2018) Validation of heart rate monitor polar rs800 for heart rate variability analysis during exercise. J. Strength Cond. Res., 32: 716–725.10.1519/JSC.0000000000001662 Search in Google Scholar

19. Hernando D., Hernando A., Casajús J.A., Casajús J.A, Laguna P., Garatachea N., Bailón R. (2018) Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing. Med. Biol. Eng. Comput., 56: 781–794.10.1007/s11517-017-1724-9 Search in Google Scholar

20. Herring N., Kalla M., Paterson D.J. (2019) The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat. Rev. Cardiol., 16: 707–726.10.1038/s41569-019-0221-2 Search in Google Scholar

21. Hiromi M., Isao S., Eri E., Koutatsu M., Tadahiro K., Takeshi T. (2014) Heart rate variability and blood pressure among Japanese men and women: a community-based cross-sectional study. Hypertens. Res., 37(8): 779–884.10.1038/hr.2014.73 Search in Google Scholar

22. Hsieh T.C., Huang C.J., Hung T.M. (2010) Relationships between heart rate variability, attention, and athletic performance, Int. J. Sport Exerc. Psychol., 8(4): 473–475.10.1080/1612197X.2010.9671964 Search in Google Scholar

23. Jiyeon A.,, Insook L., Yunjeong Y. (2019) The Thermal Effects of Water Immersion on Health Outcomes: An Integrative Review. Int. J. Environ. Res. Public Health. 16: 1280.10.3390/ijerph16071280 Search in Google Scholar

24. Lambert E.A., Esler M.D., Schlaich M.P., Dixon J., Eikelis N., Lambert G.W. (2019) Obesity-Associated Organ Damage and Sympathetic Nervous Activity A Target for Treatment? Hypertension,. 73: 1150–1159.10.1161/HYPERTENSIONAHA.118.11676 Search in Google Scholar

25. Maczkowiak S., Hölter G., Otten H. (2007) Watsu® – the effect of differently accentuated movement therapy interventions on clinically depressive patients BG, Corpus ID: 79223084. 23(2): 58–64.10.1055/s-2007-960607 Search in Google Scholar

26. Meier M., Unternaehrer E., Dimitroff S.J., Benz A., Bentele U.U., Wenzel M., Schorpp S.M., Pruessner J. (2020) In search of a standardized protocol for parasympathetic nervous system activation.10.31234/osf.io/m85qc Search in Google Scholar

27. Metelka R. (2014) Heart rate variability – current diagnosis of the cardiac autonomic neuropathy. A review. Biomed. Pap. Med. Fac., 158(3): 327-338.10.5507/bp.2014.02525004914 Search in Google Scholar

28. Mooventhan A., Nivethitha L. (2014) Scientific Evidence-Based Effects of Hydrotherapy on Various Systems of the Body. N. Am. J. Med. Sci., 6(5): 199–209.10.4103/1947-2714.132935404905224926444 Search in Google Scholar

29. Neeland I.J., Poirier P., Després J.P. (2018) Cardiovascular and Metabolic Heterogeneity of Obesity Clinical Challenges and Implications for Management Circulation. Circulation, 137: 1391–1406.10.1161/CIRCULATIONAHA.117.029617587573429581366 Search in Google Scholar

30. Niizeki K., Saitoh T. (2014) Cardio-locomotor phase synchronization during rhythmic exercise. J. Phys. Fit. Sports Med., 3(1); 11-20.10.7600/jpfsm.3.11 Search in Google Scholar

31. Noa R.B., Michal K., (2014) The Association between Cardiac Autonomic Control System and Motor Performance among Patients Post Stroke: Review of the Literature. Int. J. Neurorehabilitation, 1: 136. Search in Google Scholar

32. Nomura K., Takei Y., Yanagida Y., (2003) Comparison of cardio-locomotor synchronization during running and cycling. Eur. J. Appl. Physiol., 89: 221-229.10.1007/s00421-002-0784-0 Search in Google Scholar

33. Parker R., Higgins Z., Mlombile Z., Mohr M.J., Wagner T.L. (2018) The effects of warm water immersion on blood pressure, heart rate and heart rate variability in people with chronic fatigue syndrome. S. Afr. J. Physi-other., 74(1): 442.10.4102/sajp.v74i1.442613169930214947 Search in Google Scholar

34. Pettit N.N., MacKenzie E.L., Ridgway J.P., Pursell K., Ash D., Patel B., Pho M.T. (2020) Obesity is Associated with Increased Risk for Mortality Among Hospitalized Patients with COVID-19. Obesity, 28: 1806–1810.10.1002/oby.22941736213532589784 Search in Google Scholar

35. Plews D.J., Scott B., Altini M., Wood M., Kilding A.E., Laursen P.B. (2017) Comparison of Heart-Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography. Int. J. Sports Physiol. Perform., 12(10): 1324–1328.10.1123/ijspp.2016-066828290720 Search in Google Scholar

36. Poirier P., Martin J., Marceau P., Biron S., Marceau S. (2004) Impact of bariatric surgery on cardiac structure, function and clinical manifestations in morbid obesity. Expert Rev. Cardiovasc. Ther., 2(2): 193–201.10.1586/14779072.2.2.19315151468 Search in Google Scholar

37. Rouffet D., Taylor S., Sparrow W., Begg R., (2008) Cardio-locomotor entrainment during walking in young healthy people. A preliminary study, International Conference on Intelligent Sensors, Sensor Networks and Information Processing 347–350.10.1109/ISSNIP.2008.4762012 Search in Google Scholar

38. Shaffer F., Ginsberg J.P. (2017) An overview of heart rate variability metrics and norms. Front. Public Health, 5: 258.10.3389/fpubh.2017.00258 Search in Google Scholar

39. Schitter A.M., Fleckenstein J., Frei P., Taeymans J., Kurpiers N., Radlinger L. (2020) Applications, indications, and effects of passive hydrotherapy WATSU (WaterShiatsu) – A systematic review and meta-analysis. PLoS ONE 15(3): e0229705.10.1371/journal.pone.0229705706961632168328 Search in Google Scholar

40. Spampinato D.A., Celnik P.A., Rothwell J.C. (2020) Cerebellar-Motor Cortex Connectivity: One or Two Different Networks? J. Neurosci., 40(21): 4230–4239.10.1523/JNEUROSCI.2397-19.2020724420032312885 Search in Google Scholar

41. Takeuchi S., Nishida Y., Mizushima T. (2015) Evidence of an association between cardiac-locomotor synchronization and lower leg muscle blood perfusion during walking. J. Phys. Ther. Sci., 27(6): 1819–1822.10.1589/jpts.27.1819449999126180328 Search in Google Scholar

42. Tartof S.Y., Qian L., Hong V., Wei R., Nadjafi R.F., Fischer H., Li Z., Shaw S.F., Caparosa S.L., Nau C.L., Saxena T., Rieg G.K., Ackerson B.K., Sharp A.L., Skarbinski J., Naik T.K., Murali S.B. (2020) Obesity and Mortality Among Patients Diagnosed With COVID-19: Results From an Integrated Health Care Organization. Ann. Intern. Med., 0003-4819, M20-3742. Advance online publication.10.7326/M20-3742742999832783686 Search in Google Scholar

43. Tufekcioglu E., Cotuk H.B. (2009) Comparison of heart rate variability in different body position on land and in water. Nigde University J. Phys. Educ. Sports Sci., 3(3): 152-159. Search in Google Scholar

44. Tufekcioglu E., Erzeybek M.S., Kaya F., Ozan G. (2018) The Effect of 12-Week Passive Aquatic Bodywork on Sympathovagal Balance of Obese Youth. J. Educ. Train. Stud., 6(2): 166.10.11114/jets.v6i2.2963 Search in Google Scholar

45. Virtanen R., Jula A., Kuusela T., Helenius H., Voipio-Pulkki. (2003) Reduced heart rate variability in hypertension: associations with lifestyle factors and plasma renin activity. J. Hum. Hypertens., 17: 171–179.10.1038/sj.jhh.100152912624607 Search in Google Scholar

46. Windham B.G., Fumagalli S., Ble A., Sollers J.J., Thayer J.F., Najjar S.S., Griswold M.E., Ferrucci L. (2012) The Relationship between Heart Rate Variability and Adiposity Differs for Central and Overall Adiposity. J. Obes., 2012: 149516. DOI: 10.1155/2012/149516.10.1155/2012/149516335755622649714 Search in Google Scholar

47. www.worldobesity.org/about/about-obesity/prevalence-of-obesity Search in Google Scholar

eISSN:
2080-2234
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Public Health, Sports and Recreation, Physical Education