Open Access

Donald Duck Holiday Game: A numerical analysis of a Game of the Goose role-playing variant


The 1996 Donald Duck Holiday Game is a role-playing variant of the historical Game of the Goose, involving characters with unique attributes, event squares, and random event cards. The objective of the game is to reach the camping before any other player does. We develop a Monte Carlo simulation model that automatically plays the game and enables analyzing its key characteristics.

We assess the game on various metrics relevant to each playability. Numerical analysis shows that, on average, the game takes between 69 and 123 rounds to complete, depending on the number of players. However, durations over one hour (translated to human play time) occur over 25% of the games, which might reduce the quality of the gaming experience. Furthermore, we show that two characters are about 30% likely to win than the other three, primarily due to being exposed to fewer random events. We argue that the richer narrative of role-playing games may extend the duration for which the game remains enjoyable, such that the metrics cannot directly be compared to those of the traditional Game-of-the-Goose.

Based on our analysis, we provide several suggestions to improve the game’s balance with only slight modifications. In a broader sense, we demonstrate that a basic Monte Carlo simulation suffices to analyze Game-of-the-Goose role-playing variants, verify how they score on criteria that contribute to an enjoyable game, and detect possible anomalies.