1. bookVolume 25 (2022): Issue 1 (June 2022)
Journal Details
First Published
20 Dec 2020
Publication timeframe
2 times per year
Open Access

The pig gut microbiota analysis techniques, a comparison

Published Online: 30 Jun 2022
Volume & Issue: Volume 25 (2022) - Issue 1 (June 2022)
Page range: 90 - 115
Journal Details
First Published
20 Dec 2020
Publication timeframe
2 times per year

Allali, I., Arnold, J. W., Roach, J., Cadenas, M. B., Butz, N., Hassan, H. M., Koci, M., Ballou, A., Mendoza, M., Ali, R., Azcarate-Peri, A. (2017). A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC microbiology, 17(1), 194.10.1186/s12866-017-1101-8559803928903732 Search in Google Scholar

Argüello, H., Estellé, J., Zaldívar-López, S., Jiménez-Marín, Á., Carvajal, A., López-Bascón, M. A., Crispie, F., O’ Sullivan, O., Cotter, P. D., Priego-Capote, F., Morera, L., Garrido, J. J. (2018). Early Salmonella Typhimurium infection in pigs disrupts microbiome composition and functionality principally at the ileum mucosa. Scientific reports, 8(1), 1-12.10.1038/s41598-018-26083-3595813629773876 Search in Google Scholar

Arruda, A. G., Deblais, L., Hale, V., Pairis-Garcia, M., Srivastava, V., Kathayat, D., Kumar, A., Rajashekara, G. (2019). Nasal and gut microbiota for sows of different health status within six commercial swine farms from one swine production system. BioRxiv, 596130.10.1101/596130 Search in Google Scholar

Bellini, S., Rutili, D., & Guberti, V. (2016). Preventive measures aimed at minimizing the risk of African swine fever virus spread in pig farming systems. Acta Veterinaria Scandinavica, 58(1), 1-10.10.1186/s13028-016-0264-x512924527899125 Search in Google Scholar

Besser, J., Carleton, H. A., Gerner-Smidt, P., Lindsey, R. L., & Trees, E. (2018). Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clinical microbiology and infection, 24(4), 335-341.10.1016/j.cmi.2017.10.013585721029074157 Search in Google Scholar

Bokulich, N. A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., Lieber, A. D., Wu, F., Perez-Perez, G. I., Chen, Y., Schweizer, W., Zheng, X., Contreras, M., Dominguez- Bello, M. G., Blaser, M. J. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science translational medicine, 8(343), 343ra382-343ra382.10.1126/scitranslmed.aad7121530892427306664 Search in Google Scholar

Bottacini, F., van Sinderen, D., & Ventura, M. (2017). Omics of bifidobacteria: research and insights into their health-promoting activities. Biochemical Journal, 474(24), 4137-4152.10.1042/BCJ2016075629212851 Search in Google Scholar

Camarinha-Silva, A., Maushammer, M., Wellmann, R., Vital, M., Preuss, S., & Bennewitz, J. (2017). Host genome influence on gut microbial composition and microbial prediction of complex traits in pigs. Genetics, 206(3), 1637-1644.10.1534/genetics.117.200782550015628468904 Search in Google Scholar

Cao, Y., Fanning, S., Proos, S., Jordan, K., & Srikumar, S. (2017). A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Frontiers in microbiology, 8, 1829.10.3389/fmicb.2017.01829562701929033905 Search in Google Scholar

Casanova-Higes, A., Marín-Alcalá, C. M., Andrés-Barranco, S., Cebollada-Solanas, A., Alvarez, J., & Mainar-Jaime, R. C. (2019). Weaned piglets: another factor to be considered for the control of Salmonella infection in breeding pig farms. Veterinary research, 50(1), 45.10.1186/s13567-019-0666-7658253231215485 Search in Google Scholar

Cassoli, L., Lima, W., Esguerra, J., Da Silva, J., Machado, P., & Mourão, G. (2016). Do different standard plate counting (IDF/ISSO or AOAC) methods interfere in the conversion of individual bacteria counts to colony forming units in raw milk? Journal of applied microbiology, 121(4), 1052-1058.10.1111/jam.1322727420292 Search in Google Scholar

Chaban, B., & Hill, J. E. (2012). A ‘universal’type II chaperonin PCR detection system for the investigation of Archaea in complex microbial communities. The ISME journal, 6(2), 430-439.10.1038/ismej.2011.96326051421776031 Search in Google Scholar

Chaplin, A., Brzhozovskii, A., Parfenova, T., Kafarskaia, L., Volodin, N., Shkoporov, A., Ilina, E. N., Efimov, B. A. (2015). Species diversity of bifidobacteria in the intestinal microbiota studied using MALDI-TOF mass-spectrometry. Annals of the Russian academy of medical sciences, 70(4), 435-440.10.15690/vramn.v70.i4.1409 Search in Google Scholar

Chen, L., Xu, Y., Chen, X., Fang, C., Zhao, L., & Chen, F. (2017). The maturing development of gut microbiota in commercial piglets during the weaning transition. Frontiers in microbiology, 8, 1688.10.3389/fmicb.2017.01688559137528928724 Search in Google Scholar

Chen, W., Mi, J., Lv, N., Gao, J., Cheng, J., Wu, R., Ma, J., Lan, T., Liao, X. (2018). Lactation stage-dependency of the sow milk microbiota. Frontiers in micro-biology, 9, 945.10.3389/fmicb.2018.00945595820329867853 Search in Google Scholar

Cheng, D., Song, J., Xie, M., & Song, D. (2019). The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: A review. Trends in Food Science & Technology, 91, 426-435.10.1016/j.tifs.2019.07.044 Search in Google Scholar

Collado, M., Grześkowiak, Ł., & Salminen, S. (2007). Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Current microbiology, 55(3), 260-265.10.1007/s00284-007-0144-817657533 Search in Google Scholar

Costello, M., Fleharty, M., Abreu, J., Farjoun, Y., Ferriera, S., Holmes, L., Granger, B., Green, L., Howd, T., Mason, T., Vicente, G., Dasilva, M., Brodeur, W., DeS-met, T., Dodge, S., Lennon, N. J., Gabriel, S. (2018). Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC genomics, 19(1), 1-10.10.1186/s12864-018-4703-0594178329739332 Search in Google Scholar

Crespo-Piazuelo, D., Estellé, J., Revilla, M., Criado-Mesas, L., Ramayo-Caldas, Y., Óvilo, C., Fernandez, A.I., Ballaster, M., Folch, J. M. (2018). Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions. Scientific reports, 8(1), 1-12.10.1038/s41598-018-30932-6610915830143657 Search in Google Scholar

Crofts, T. S., Gasparrini, A. J., & Dantas, G. (2017). Next-generation approaches to understand and combat the antibiotic resistome. Nature Reviews Micro-biology, 15(7), 422.10.1038/nrmicro.2017.28568147828392565 Search in Google Scholar

Cui, C., Shu, W., & Li, P. (2016). Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Frontiers in cell and developmental biology, 4, 89.10.3389/fcell.2016.00089501125627656642 Search in Google Scholar

De Gregoris, T. B., Aldred, N., Clare, A. S., & Burgess, J. G. (2011). Improvement of phylum-and class-specific primers for real-time PCR quantification of bacterial taxa. Journal of microbiological methods, 86(3), 351-356.10.1016/j.mimet.2011.06.01021704084 Search in Google Scholar

De Rodas, B., Youmans, B. P., Danzeisen, J. L., Tran, H., & Johnson, T. J. (2018). Microbiome profiling of commercial pigs from farrow to finish. Journal of Animal Science, 96(5), 1778-1794.10.1093/jas/sky109614088229635455 Search in Google Scholar

Delsart, M., Pol, F., Dufour, B., Rose, N., & Fablet, C. (2020). Pig Farming in Alternative Systems: Strengths and Challenges in Terms of Animal Welfare, Biosecurity, Animal Health and Pork Safety. Agriculture, 10(7), 261.10.3390/agriculture10070261 Search in Google Scholar

Dobranić, V., Kazazić, S., Filipović, I., Mikulec, N., & Zdolec, N. (2016). Composition of raw cow’s milk microbiota and identification of enterococci by MALDITOF MS-short communication. Veterinarski arhiv, 86(4), 581-590. Search in Google Scholar

Eeckhaut, V., Machiels, K., Perrier, C., Romero, C., Maes, S., Flahou, B., Steppe, M., Haessebrouck, F., Sas, B., Ducatelle, R., Vermeire, S., Van Immerseel, F. (2013). Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut, 62(12), 1745-1752.10.1136/gutjnl-2012-30361123263527 Search in Google Scholar

Eren, A. M., Maignien, L., Sul, W. J., Murphy, L. G., Grim, S. L., Morrison, H. G., & Sogin, M. L. (2013). Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods in ecology and evolution, 4(12), 1111-1119.10.1111/2041-210X.12114386467324358444 Search in Google Scholar

Fenske, G. J., Ghimire, S., Antony, L., Christopher-Hennings, J., & Scaria, J. (2019). The Gut Microbiota composition of Feral and Tamworth Pigs determined using High-Throughput Culturomics and Metagenomics Reveals Compositional Variations When Compared to the Commercial Breeds. BioRxiv, 738278.10.1101/738278 Search in Google Scholar

Fernando, W. (2012). Alternatives to In-Feed Antibiotics in Animal Feed: A Healthy Gut Microbiota Approach. Journal of Food and Agriculture, 2(1).10.4038/jfa.v2i1.3940 Search in Google Scholar

Ferrario, C., Alessandri, G., Mancabelli, L., Gering, E., Mangifesta, M., Milani, C., Lugli, G. A., Viappiani A., Duranti, S., Turroni, F., Ossiprandi, M. C., Hiyashi, R., van Sinderen, D., Ventura, M. (2017). Untangling the cecal microbiota of feral chickens by culturomic and metagenomic analyses. Environmental microbiology, 19(11), 4771-4783.10.1111/1462-2920.1394328967204 Search in Google Scholar

Fouhse, J., Zijlstra, R., & Willing, B. (2016). The role of gut microbiota in the health and disease of pigs. Animal Frontiers, 6(3), 30-36.10.2527/af.2016-0031 Search in Google Scholar

Frese, S. A., Parker, K., Calvert, C. C., & Mills, D. A. (2015). Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome, 3(1), 1-10.10.1186/s40168-015-0091-8449917626167280 Search in Google Scholar

Fricker, A. M., Podlesny, D., & Fricke, W. F. (2019). What is new and relevant for sequencing-based microbiome research? A mini-review. Journal of advanced research, 19, 105-112.10.1016/j.jare.2019.03.006663004031341676 Search in Google Scholar

Gao, K., Pi, Y., Peng, Y., Mu, C.-L., & Zhu, W.-Y. (2018). Time-course responses of ileal and fecal microbiota and metabolite profiles to antibiotics in cannulated pigs. Applied microbiology and biotechnology, 102(5), 2289-2299.10.1007/s00253-018-8774-229362824 Search in Google Scholar

Gibbons, J., Boland, F., Egan, J., Fanning, S., Markey, B., & Leonard, F. (2016). Antimicrobial resistance of faecal Escherichia coli isolates from pig farms with different durations of in-feed antimicrobial use. Zoonoses and public health, 63(3), 241-250.10.1111/zph.1222526355644 Search in Google Scholar

Gladney, C., Bertani, G., Johnson, R., & Pomp, D. (2004). Evaluation of gene expression in pigs selected for enhanced reproduction using differential display PCR and human microarrays: I. Ovarian follicles. Journal of Animal Science, 82(1), 17-31.10.2527/2004.82117x14753345 Search in Google Scholar

Gomez, A. Microbiome studies in swine systems: Challenges and opportunities (Part 2). Search in Google Scholar

Gomez, A. (2019). 112 Beyond the gut: Systemic effects of the swine gut microbiome. Journal of animal science, 97(Suppl 2), 63.10.1093/jas/skz122.116 Search in Google Scholar

Gratz, S. W., Currie, V., Richardson, A. J., Duncan, G., Holtrop, G., Farquharson, F., Louis, P., Pinton, P., Oswald, I. P. (2018). Porcine small and large intestinal microbiota rapidly hydrolyze the masked mycotoxin deoxynivalenol-3-glucoside and release deoxynivalenol in spiked batch cultures in vitro. Applied and Environmental Microbiology, 84(2).10.1128/AEM.02106-17575285029101203 Search in Google Scholar

Gresse, R., Chaucheyras-Durand, F., Fleury, M. A., Van de Wiele, T., Forano, E., & Blanquet-Diot, S. (2017). Gut microbiota dysbiosis in postweaning pig-lets: understanding the keys to health. Trends in microbiology, 25(10), 851-873.10.1016/j.tim.2017.05.00428602521 Search in Google Scholar

Guevarra, R. B., Hong, S. H., Cho, J. H., Kim, B.-R., Shin, J., Lee, J. H., Kang, B. N., Wattanaphansak, S., Issacson, R. E., Song, M., Kim, H. B. (2018). The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition. Journal of animal science and biotechnology, 9(1), 54.10.1186/s40104-018-0269-6606505730069307 Search in Google Scholar

Guevarra, R. B., Lee, J. H., Lee, S. H., Seok, M.-J., Kim, D. W., Kang, B. N., BG., Kim, H. B. (2019). Piglet gut microbial shifts early in life: causes and effects. Journal of animal science and biotechnology, 10(1), 1-10.10.1186/s40104-018-0308-3633074130651985 Search in Google Scholar

Guo, X., Xia, X., Tang, R., & Wang, K. (2008). Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and Landrace pigs. Anaerobe, 14(4), 224-228.10.1016/j.anaerobe.2008.04.00118524640 Search in Google Scholar

Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S. K., Sodergren, E., Methe, B., DeSantis, T. Z., Human Microbiome Consortium, Petrosino, J. F., Knight, R., Birren, B. W. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome research, 21(3), 494-504.10.1101/gr.112730.110304486321212162 Search in Google Scholar

Han, G. G., Lee, J.-Y., Jin, G.-D., Park, J., Choi, Y. H., Kang, S.-K., Chae, B. J., Kim, E. B., Choi, Y.-J. (2018). Tracing of the fecal microbiota of commercial pigs at five growth stages from birth to shipment. Scientific reports, 8(1), 1-9.10.1038/s41598-018-24508-7590262429662088 Search in Google Scholar

Hatt, J. K., & Löffler, F. E. (2012). Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater. Journal of microbiological methods, 88(2), 263-270.10.1016/j.mimet.2011.12.00522200549 Search in Google Scholar

Hermann-Bank, M. L., Skovgaard, K., Stockmarr, A., Larsen, N., & Mølbak, L. (2013). The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity. BMC genomics, 14(1), 788.10.1186/1471-2164-14-788387971424225361 Search in Google Scholar

Hiergeist, A., Gläsner, J., Reischl, U., & Gessner, A. (2015). Analyses of intestinal microbiota: culture versus sequencing. ILAR journal, 56(2), 228-240.10.1093/ilar/ilv01726323632 Search in Google Scholar

Hillman, E. T., Lu, H., Yao, T., & Nakatsu, C. H. (2017). Microbial ecology along the gastrointestinal tract. Microbes and environments, ME17017.10.1264/jsme2.ME17017574501429129876 Search in Google Scholar

Huber, D., von Voithenberg, L. V., & Kaigala, G. (2018). Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH? Micro and Nano Engineering, 1, 15-24.10.1016/j.mne.2018.10.006 Search in Google Scholar

Isaacson, R., & Kim, H. B. (2012). The intestinal microbiome of the pig. Animal Health Research Reviews, 13(1), 100-109.10.1017/S146625231200008422853934 Search in Google Scholar

Jian, C., Luukkonen, P., Yki-Järvinen, H., Salonen, A., & Korpela, K. (2020). Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PloS one, 15(1), e0227285.10.1371/journal.pone.0227285696188731940382 Search in Google Scholar

Jimeno, R., Brailey, P. M., & Barral, P. (2018). Quantitative polymerase chain reaction-based analyses of murine intestinal microbiota after oral antibiotic treatment. JoVE (Journal of Visualized Experiments)(141), e58481.10.3791/5848130507921 Search in Google Scholar

Kim, H. B., & Isaacson, R. E. (2015). The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Veterinary microbiology, 177(3-4), 242-251.10.1016/j.vetmic.2015.03.01425843944 Search in Google Scholar

Kinstler, S., Li, Y., Miller, P., Burkey, T. E., Trenhaile-Gannemann, M., Fernando, S. C., Tom, W. A. (2019). 151 Effects of carbohydrate source on performance and gastrointestinal microbiota in nursery pigs. Journal of Animal Science, 97(Supplement_2), 86-86.10.1093/jas/skz122.156 Search in Google Scholar

Klaschik, S., Lehmann, L. E., Raadts, A., Book, M., Hoeft, A., & Stuber, F. (2002). Real-time PCR for detection and differentiation of gram-positive and gram-negative bacteria. Journal of clinical microbiology, 40(11), 4304-4307.10.1128/JCM.40.11.4304-4307.200213968012409416 Search in Google Scholar

Konstantinov, S. R., Awati, A. A., Williams, B. A., Miller, B. G., Jones, P., Stokes, C. R., Akkermans, A.D. L., Smidt, H., De Vos, W. M. (2006). Post-natal development of the porcine microbiota composition and activities. Environmental microbiology, 8(7), 1191-1199.10.1111/j.1462-2920.2006.01009.x16817927 Search in Google Scholar

Korpela, K., Blakstad, E. W., Moltu, S. J., Strømmen, K., Nakstad, B., Rønnestad, A. E., Braekke, K., Drevon, C. A., De Vos, W. (2018). Intestinal microbiota development and gestational age in preterm neonates. Scientific reports, 8(1), 1-9.10.1038/s41598-018-20827-x580273929410448 Search in Google Scholar

Kraemer, J. G., Ramette, A., Aebi, S., Oppliger, A., & Hilty, M. (2018). Influence of pig farming on the human nasal microbiota: key role of airborne microbial communities. Applied and Environmental Microbiology, 84(6).10.1128/AEM.02470-17583573429330190 Search in Google Scholar

Kraler, M., Ghanbari, M., Domig, K. J., Schedle, K., & Kneifel, W. (2016). The intestinal microbiota of piglets fed with wheat bran variants as characterised by 16S rRNA next-generation amplicon sequencing. Archives of Animal Nutrition, 70(3), 173-189.10.1080/1745039X.2016.116053427032029 Search in Google Scholar

Kuderer, N. M., Burton, K. A., Blau, S., Rose, A. L., Parker, S., Lyman, G. H., & Blau, C. A. (2017). Comparison of 2 commercially available next-generation sequencing platforms in oncology. JAMA oncology, 3(7), 996-998.10.1001/jamaoncol.2016.4983582423627978570 Search in Google Scholar

Kumar, A., Vlasova, A. N., Deblais, L., Huang, H.-C., Wijeratne, A., Kandasamy, S., Fisher, D. D., Langel, S. N., Paim, F. C., Alhamo, M. A., Shao, L., Saif, L. J., Rajashekara, G. (2018). Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model. BMC gastroenterology, 18(1), 1-17.10.1186/s12876-018-0810-2601398929929472 Search in Google Scholar

Leser, T. D., Amenuvor, J. Z., Jensen, T. K., Lindecrona, R. H., Boye, M., & Møller, K. (2002). Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Applied and Environmental Microbiology, 68(2), 673-690.10.1128/AEM.68.2.673-690.200212671211823207 Search in Google Scholar

Lin, B., Gong, J., Wang, Q., Cui, S., Yu, H., & Huang, B. (2011). In-vitro assessment of the effects of dietary fibers on microbial fermentation and communities from large intestinal digesta of pigs. Food Hydrocolloids, 25(2), 180-188.10.1016/j.foodhyd.2010.02.006 Search in Google Scholar

Lu, D., Tiezzi, F., Schillebeeckx, C., McNulty, N. P., Schwab, C., Shull, C., & Maltecca, C. (2018). Host contributes to longitudinal diversity of fecal microbiota in swine selected for lean growth. Microbiome, 6(1), 4.10.1186/s40168-017-0384-1575515829301569 Search in Google Scholar

Maccari, G., Robinson, J., Bontrop, R. E., Otting, N., de Groot, N. G., Ho, C.-S., Ballingall, K. T., Marsh, S. G. E., Hammond, J. A. (2018). IPD-MHC: nomenclature requirements for the non-human major histocompatibility complex in the next-generation sequencing era. Immunogenetics, 70(10), 619-623.10.1007/s00251-018-1072-4618240230027299 Search in Google Scholar

Maradiaga, N., Aldridge, B., Zeineldin, M., & Lowe, J. (2018). Gastrointestinal microbiota and mucosal immune gene expression in neonatal pigs reared in a cross-fostering model. Microbial pathogenesis, 121, 27-39.10.1016/j.micpath.2018.05.00729742464 Search in Google Scholar

McCaskey, L., & LaRocco, M. (1995). Competency testing in clinical microbiology. Laboratory Medicine, 26(5), 343-349.10.1093/labmed/26.5.343 Search in Google Scholar

Mendes-Soares, H., Suzuki, H., Hickey, R. J., & Forney, L. J. (2014). Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment. Journal of bacteriology, 196(7), 1458-1470.10.1128/JB.01439-13 Search in Google Scholar

Metzler-Zebeli, B. U., Schmitz-Esser, S., Klevenhusen, F., Podstatzky-Lichtenstein, L., Wagner, M., & Zebeli, Q. (2013). Grain-rich diets differently alter ruminal and colonic abundance of microbial populations and lipopolysaccha-ride in goats. Anaerobe, 20, 65-73.10.1016/j.anaerobe.2013.02.00523474085 Search in Google Scholar

Mi, J., Peng, H., Wu, Y., Wang, Y., & Liao, X. (2019). Diversity and community of methanogens in the large intestine of finishing pigs. BMC microbiology, 19(1), 83.10.1186/s12866-019-1459-x648923231035941 Search in Google Scholar

Moon, J. S., Li, L., Bang, J., & Han, N. S. (2016). Application of in vitro gut fermentation models to food components: A review. Food science and biotechnology, 25(1), 1-7.10.1007/s10068-016-0091-x604940830263479 Search in Google Scholar

Muurinen, J., Richert, J., Wickware, C. L., Richert, B., & Johnson, T. A. (2021). Swine growth promotion with antibiotics or alternatives can increase antibiotic resistance gene mobility potential. Scientific reports, 11(1), 1-13.10.1038/s41598-021-84759-9797089233750827 Search in Google Scholar

Namkung, H., Li J. Gong, M., Yu, H., Cottrill, M., & De Lange, C. (2004). Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Canadian Journal of Animal Science, 84(4), 697-704.10.4141/A04-005 Search in Google Scholar

Namsolleck, P., Thiel, R., Lawson, P., Holmstrøm, K., Rajilic, M., Vaughan, E. E., Rigottier-Gois, L., Collins, M. D., de Vos, W. M., Blaut, M. (2004). Molecular methods for the analysis of gut microbiota. Microbial ecology in health and disease, 16(2-3), 71-85.10.1080/08910600410032367 Search in Google Scholar

Nero, L. A., Beloti, V., DE Aguiar Ferreira Barros, M., Ortolani, M. B. T., Tamanini, R., & DE Melo Franco, B. D. G. (2006). Comparison of Petrifilm aerobic count plates and de Man–Rogosa–Sharpe agar for enumeration of lactic acid bacteria. Journal of Rapid Methods & Automation in Microbiology, 14(3), 249-257.10.1111/j.1745-4581.2006.00050.x Search in Google Scholar

Nigam, D. (2015). Microbial interactions with humans and animals. Int J Micro-biol Allied Sci, 2, 1-17. Search in Google Scholar

Niu, Q., Li, P., Hao, S., Zhang, Y., Kim, S. W., Li, H., Ma, X., Gao, S., He, L., Jun Wu, W., Huang, X., Hua, J., Zhou, B., Huang, R. (2015). Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Scientific reports, 5, 9938.10.1038/srep09938440467925898122 Search in Google Scholar

Oh, P. L., Benson, A. K., Peterson, D. A., Patil, P. B., Moriyama, E. N., Roos, S., & Walter, J. (2010). Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. The ISME journal, 4(3), 377-387.10.1038/ismej.2009.12319924154 Search in Google Scholar

Ott, S. J., Musfeldt, M., Ullmann, U., Hampe, J., & Schreiber, S. (2004). Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. Journal of clinical microbiology, 42(6), 2566-2572.10.1128/JCM.42.6.2566-2572.200442781815184435 Search in Google Scholar

Pang, X., Hua, X., Yang, Q., Ding, D., Che, C., Cui, L., Jia, W., Bucheli, P., Zhao, L. (2007). Inter-species transplantation of gut microbiota from human to pigs. The ISME journal, 1(2), 156-162.10.1038/ismej.2007.2318043625 Search in Google Scholar

Patel, A., Harris, K. A., & Fitzgerald, F. (2017). What is broad-range 16S rDNA PCR? Archives of Disease in Childhood-Education and Practice, 102(5), 261-264.10.1136/archdischild-2016-31204928416513 Search in Google Scholar

Pedersen, R., Andersen, A. D., Mølbak, L., Stagsted, J., & Boye, M. (2013). Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs. BMC microbiology, 13(1), 30.10.1186/1471-2180-13-30361025323391125 Search in Google Scholar

Peng, W., Yuan, K., Zhou, X., Hu, M., Abs EL-Osta, Y. G., & Gasser, R. B. (2003). Molecular epidemiological investigation of Ascaris genotypes in China based on single-strand conformation polymorphism analysis of ribosomal DNA. Electrophoresis, 24(14), 2308-2315.10.1002/elps.20030545512874864 Search in Google Scholar

Petersson, A., Domig, K. J., Nagel, P., Zollitsch, W., Hagmüller, W., & Kneifel, W. (2009). Denaturing gradient gel electrophoresis (DGGE)-based monitoring of intestinal lactobacilli and bifidobacteria of pigs during a feeding trial. Archives of Animal Nutrition, 63(2), 112-126.10.1080/1745039090273395919489454 Search in Google Scholar

Pylro, V. S., Roesch, L. F. W., Morais, D. K., Clark, I. M., Hirsch, P. R., & Tótola, M. R. (2014). Data analysis for 16S microbial profiling from different benchtop sequencing platforms. Journal of microbiological methods, 107, 30-37.10.1016/j.mimet.2014.08.01825193439 Search in Google Scholar

Ramayo-Caldas, Y., Mach, N., Lepage, P., Levenez, F., Denis, C., Lemonnier, G., Leplat, J.J., Bilon, Y., Berri, M., Dore, J., Roger- Gaillard, C., Estelle, J. (2016). Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. The ISME journal, 10(12), 2973-2977.10.1038/ismej.2016.77514819827177190 Search in Google Scholar

Ramirez-Farias, C., Slezak, K., Fuller, Z., Duncan, A., Holtrop, G., & Louis, P. (2008). Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. British Journal of Nutrition, 101(4), 541-550.10.1017/S000711450801988018590586 Search in Google Scholar

Recharla, N., Kim, D., Ramani, S., Song, M., Park, J., Balasubramanian, B., Puligundla, P., Park, S. (2019). Dietary multi-enzyme complex improves in vitro nutrient digestibility and hind gut microbial fermentation of pigs. PloS one, 14(5), e0217459.10.1371/journal.pone.0217459653824931136616 Search in Google Scholar

Richards, J., Gong, J., & De Lange, C. (2005). The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: Current understanding, possible modulations, and new technologies for ecological studies. Canadian Journal of Animal Science, 85(4), 421-435.10.4141/A05-049 Search in Google Scholar

Rintala, A., Pietilä, S., Munukka, E., Eerola, E., Pursiheimo, J.-P., Laiho, A., Pekkala, S., Huovinen, P. (2017). Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor. Journal of biomolecular techniques: JBT, 28(1), 19.10.7171/jbt.17-2801-003533039028260999 Search in Google Scholar

Salonen, A., Nikkilä, J., Jalanka-Tuovinen, J., Immonen, O., Rajilić-Stojanović, M., Kekkonen, R. A., Palva, A., de Vos, W. M. (2010). Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. Journal of microbiological methods, 81(2), 127-134.10.1016/j.mimet.2010.02.00720171997 Search in Google Scholar

Samanta, A., Chikkerur, J., Kolte, A., Dhali, A., Javvaji, P., Roy, S., Senani, S., Sridhar, M. (2019). Bacterial fingerprinting of faecal samples of pigs supplemented with plant sourced feed additives. Indian Journal of Animal Research, 53(6), 807-813.10.18805/ijar.B-3582 Search in Google Scholar

Saraf, M. K., Piccolo, B. D., Bowlin, A. K., Mercer, K. E., LeRoith, T., Chintapalli, S. V., Shankar, K., Badger, T. M., Yeruva, L. (2017). Formula diet driven micro-biota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon. Microbiome, 5(1), 1-13.10.1186/s40168-017-0297-z551308628705171 Search in Google Scholar

Schell, M. A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M-C., Desiere, F., Bork, P., Delley, M., Pridmore, R.D., Arigoni, F. (2002). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proceedings of the National Academy of Sciences, 99(22), 14422-14427.10.1073/pnas.21252759913789912381787 Search in Google Scholar

Schokker, D., Zhang, J., Vastenhouw, S. A., Heilig, H. G., Smidt, H., Rebel, J. M., & Smits, M. A. (2015). Long-lasting effects of early-life antibiotic treatment and routine animal handling on gut microbiota composition and immune system in pigs. PloS one, 10(2), e0116523.10.1371/journal.pone.0116523431977925658611 Search in Google Scholar

Secco, C., da Luz, L. M., Pinheiro, E., de Francisco, A. C., Puglieri, F. N., Piekarski, C. M., & Freire, F. M. C. S. (2020). Circular economy in the pig farming chain: Proposing a model for measurement. Journal of Cleaner Production, 260, 121003.10.1016/j.jclepro.2020.121003 Search in Google Scholar

Sieuwerts, S., De Bok, F. A., Mols, E., De Vos, W. M., & van Hylckama Vlieg, J. (2008). A simple and fast method for determining colony forming units. Letters in applied microbiology, 47(4), 275-278.10.1111/j.1472-765X.2008.02417.x18778376 Search in Google Scholar

Slifierz, M. J., Friendship, R. M., & Weese, J. S. (2015). Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC microbiology, 15(1), 184.10.1186/s12866-015-0512-7457825426391877 Search in Google Scholar

Tan, Z., Wang, Y., Yang, T., Ao, H., Chen, S., Xing, K., Zhang, F., Zhao, X., Liu, J., Wang, C. (2018). Differences in gut microbiota composition in finishing Land-race pigs with low and high feed conversion ratios. Antonie Van Leeuwenhoek, 111(9), 1673-1685.10.1007/s10482-018-1057-1609773329497869 Search in Google Scholar

Tian, G., Wu, X., Chen, D., Yu, B., & He, J. (2017). Adaptation of gut microbiome to different dietary nonstarch polysaccharide fractions in a porcine model. Molecular nutrition & food research, 61(10), 1700012.10.1002/mnfr.20170001228586175 Search in Google Scholar

Tkacz, A., Hortala, M., & Poole, P. S. (2018). Absolute quantitation of microbiota abundance in environmental samples. Microbiome, 6(1), 1-13.10.1186/s40168-018-0491-7600982329921326 Search in Google Scholar

Tovar, M., Hengoju, S., Weber, T., Mahler, L., Choudhary, M., Becker, T., & Roth, M. (2019). One sensor for multiple colors: Fluorescence analysis of micro-droplets in microbiological screenings by frequency-division multiplexing. Analytical chemistry, 91(4), 3055-3061.10.1021/acs.analchem.8b0545130689354 Search in Google Scholar

Tröscher-Mußotter, J., Tilocca, B., Stefanski, V., & Seifert, J. (2019). Analysis of the bacterial and host proteins along and across the porcine gastrointestinal tract. Proteomes, 7(1), 4.10.3390/proteomes7010004647394030634649 Search in Google Scholar

Tsuchida, S., Maruyama, F., Ogura, Y., Toyoda, A., Hayashi, T., Okuma, M., & Ushida, K. (2017). Genomic characteristics of Bifidobacterium thermacidophilum pig isolates and wild boar isolates reveal the unique presence of a putative mobile genetic element with tetW for pig farm isolates. Frontiers in microbiology, 8, 1540.10.3389/fmicb.2017.01540556179928861055 Search in Google Scholar

Wang, J., Yin, F., Zhu, C., Yu, H., Niven, S., De Lange, C., & Gong, J. (2012). Evaluation of probiotic bacteria for their effects on the growth performance and intestinal microbiota of newly-weaned pigs fed fermented high-moisture maize. Livestock Science, 145(1-3), 79-86.10.1016/j.livsci.2011.12.024 Search in Google Scholar

Wang, T., Teng, K., Liu, Y., Shi, W., Zhang, J., Dong, E., Zhang, X., Tao, Y., Zhong, J. (2019). Lactobacillus plantarum PFM 105 promotes intestinal development through modulation of gut microbiota in weaning piglets. Frontiers in microbiology, 10, 90.10.3389/fmicb.2019.00090637175030804899 Search in Google Scholar

Wang, W., Hu, H., Zijlstra, R. T., Zheng, J., & Gänzle, M. G. (2019). Metagenomic reconstructions of gut microbial metabolism in weanling pigs. Microbiome, 7(1), 1-11.10.1186/s40168-019-0662-1643622130914068 Search in Google Scholar

Wang, Y., Hu, Y., Liu, F., Cao, J., Lv, N., Zhu, B., Zhang, G., Gao, G. F. (2020). Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environment International, 138, 105649.10.1016/j.envint.2020.10564932200314 Search in Google Scholar

White, J. K., Nielsen, J. L., & Madsen, A. M. (2019). Microbial species and biodiversity in settling dust within and between pig farms. Environmental research, 171, 558-567.10.1016/j.envres.2019.01.00830771719 Search in Google Scholar

Xiao, L., Estellé, J., Kiilerich, P., Ramayo-Caldas, Y., Xia, Z., Feng, Q., Liang, S., Pedersen, A. Ø., Kjeldsen, N. J., Liu, C., Maguin, E., Dore, J., Pons, N., Le Chatelier, E., Prifti, E., Li, J., Jia, H., Liu, X., Xu, X., Ehrlich, S.D., Madsen, L., Kristiansen, K., Rogel-Gaillard, C., Wang, J. (2016). A reference gene catalogue of the pig gut microbiome. Nature microbiology, 1(12), 1-6.10.1038/nmicrobiol.2016.16127643971 Search in Google Scholar

Yang, H., Huang, X., Fang, S., Xin, W., Huang, L., & Chen, C. (2016). Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness. Scientific reports, 6, 27427.10.1038/srep27427489166627255518 Search in Google Scholar

Yang, H., Xiao, Y., Wang, J., Xiang, Y., Gong, Y., Wen, X., & Li, D. (2018). Core gut microbiota in Jinhua pigs and its correlation with strain, farm and weaning age. Journal of Microbiology, 56(5), 346-355.10.1007/s12275-018-7486-829721832 Search in Google Scholar

Yasukawa, K., Iida, K., Okano, H., Hidese, R., Baba, M., Yanagihara, I., Kojima, K., Takita, T., Fujiwara, S. (2017). Next-generation sequencing-based analysis of reverse transcriptase fidelity. Biochemical and biophysical research communications, 492(2), 147-153.10.1016/j.bbrc.2017.07.16928778390 Search in Google Scholar

Zeineldin, M., Aldridge, B., Blair, B., Kancer, K., & Lowe, J. (2018). Impact of parenteral antimicrobial administration on the structure and diversity of the fecal microbiota of growing pigs. Microbial pathogenesis, 118, 220-229.10.1016/j.micpath.2018.03.03529578067 Search in Google Scholar

Zhang, L., Chen, P., Zhou, Z., Hu, Y., Sha, Q., Zhang, H., Liu, X., Du, W., Feng, X., Liu, B.-F. (2019). Agarose-based microwell array chip for high-throughput screening of functional microorganisms. Talanta, 191, 342-349.10.1016/j.talanta.2018.08.09030262069 Search in Google Scholar

Zhang, L., Wu, W., Lee, Y.-K., Xie, J., & Zhang, H. (2018). Spatial heterogeneity and co-occurrence of mucosal and luminal microbiome across swine intestinal tract. Frontiers in microbiology, 9, 48.10.3389/fmicb.2018.00048581030029472900 Search in Google Scholar

Zhang, W., Zhu, Y.-H., Zhou, D., Wu, Q., Song, D., Dicksved, J., & Wang, J.-F. (2017). Oral administration of a select mixture of Bacillus probiotics affects the gut microbiota and goblet cell function following Escherichia coli challenge in newly weaned pigs of genotype MUC4 that are supposed to be enterotoxigenic E. coli F4ab/ac receptor negative. Applied and Environmental Microbiology, 83(3).10.1128/AEM.02747-16524429427881419 Search in Google Scholar

Zhao, S.-H., Recknor, J., Lunney, J. K., Nettleton, D., Kuhar, D., Orley, S., & Tuggle, C. K. (2005). Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig. Genomics, 86(5), 618-625.10.1016/j.ygeno.2005.08.00116216716 Search in Google Scholar

Zhao, W., Wang, Y., Liu, S., Huang, J., Zhai, Z., He, C., Ding, J., Wang, J., Wang, H., Fan, W., Zhao, J., Meng, H. (2015). The dynamic distribution of porcine micro-biota across different ages and gastrointestinal tract segments. PloS one, 10(2), e0117441.10.1371/journal.pone.0117441433143125688558 Search in Google Scholar

Zoetendal, E. G., Collier, C. T., Koike, S., Mackie, R. I., & Gaskins, H. R. (2004). Molecular ecological analysis of the gastrointestinal microbiota: a review. The Journal of nutrition, 134(2), 465-472.10.1093/jn/134.2.46514747690 Search in Google Scholar

Recommended articles from Trend MD