1. bookVolume 24 (2021): Issue 2 (December 2021)
Journal Details
License
Format
Journal
eISSN
2344-4592
First Published
20 Dec 2020
Publication timeframe
2 times per year
Languages
English
access type Open Access

The Effects and Mechanisms of Action of Zearalenone in Human Intestinal Epithelial Cells

Published Online: 30 Dec 2021
Volume & Issue: Volume 24 (2021) - Issue 2 (December 2021)
Page range: 134 - 149
Journal Details
License
Format
Journal
eISSN
2344-4592
First Published
20 Dec 2020
Publication timeframe
2 times per year
Languages
English
Abstract

Fusariotoxins are fungal secondary metabolites produced mainly by Fusarium and Giberella species, zearalenone (ZEA) being one of the most widespread members of this class. Exposure to ZEA affects the health of animals and humans, predominantly by disrupting the activity of the reproductive system due to its structural resemblance to estrogen, but it also affects other systems such as the digestive, nervous and immune systems. The main route through which ZEA enters the body is by ingestion, the intestinal epithelium being the first tissue exposed to the toxin. The intestinal barrier not only has a mechanical role in defending the body, it is also able to secrete effector molecules involved in the immune and inflammatory response such as cytokines. In this in vitro study, performed on the line Caco-2, the effects of ZEA on inflammation of the intestinal epithelium were studied by quantifying gene expression and protein concentration of pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and IL-8. Also, the mechanism of inflammation that ZEA can affect at intestinal level was investigated by monitoring the level of mRNA and the protein expression of the nuclear receptors NF-κB and Nrf-2. The results of this study demonstrate that ZEA has an anti-inflammatory character on human intestinal epithelial cells Caco-2, reducing the gene expression of the pro-inflammatory cytokines IL-1β, TNF-α, IL-6, IL-8. Also, ZEA led to a decrease in the protein concentration of IL-6 and IL-8. The anti-inflammatory response seems to be induced by modulation of gene and protein expresion of NF-κB and Nrf-2 nuclear receptors.

Keywords

Abid-Essefi, S., Ouanes, Z., Hassen, W., Baudrimont, I., Creppy, E., & Bacha, H. (2004). Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 18(4), 467–474. https://doi.org/10.1016/j.tiv.2003.12.01110.1016/j.tiv.2003.12.01115130604Search in Google Scholar

Bakker, M. G., Brown, D. W., Kelly, A. C., Kim, H.-S., Kurtzman, C. P., Mccormick, S. P., O'Donnell, K. L., Proctor, R. H., Vaughan, M. M., & Ward, T. J. (2018). Fusarium mycotoxins: a trans-disciplinary overview. Canadian Journal of Plant Pathology, 40(2), 161–171. https://doi.org/10.1080/07060661.2018.143372010.1080/07060661.2018.1433720Search in Google Scholar

Ben Salah-Abbès, Jalila, Hela Belgacem, Khawla Ezzdini, Mosaad A. Abdel-Wahhab, and Samir Abbès. 2020. “Zearalenone Nephrotoxicity: DNA Fragmentation, Apoptotic Gene Expression and Oxidative Stress Protected by Lactobacillus Plantarum MON03.” Toxicon 175:28–35.10.1016/j.toxicon.2019.12.00431830485Search in Google Scholar

Bulgaru, C. v, Marin, D. E., Pistol, G. C., & Taranu, I. (2021). Zearalenone and the Immune Response. In Toxins (Vol. 13, Issue 4). https://doi.org/10.3390/toxins1304024810.3390/toxins13040248806606833807171Search in Google Scholar

Busk, Ø. L., Ndossi, D., Verhaegen, S., Connolly, L., Eriksen, G., Ropstad, E., & Sørlie, M. (2011). Relative quantification of the proteomic changes associated with the mycotoxin zearalenone in the H295R steroidogenesis model. Toxicon, 58(6), 533–542. https://doi.org/https://doi.org/10.1016/j.toxicon.2011.08.01510.1016/j.toxicon.2011.08.01521907227Search in Google Scholar

Cavret, S., & Lecoeur, S. (2006). Fusariotoxin transfer in animal. Food and Chemical Toxicology, 44(3), 444–453. https://doi.org/https://doi.org/10.1016/j.fct2005.08.021Search in Google Scholar

Cirlini, M., Barilli, A., Galaverna, G., Michlmayr, H., Adam, G., Berthiller, F., & Dall’Asta, C. (2016). Study on the uptake and metabolism of the masked forms of zearalenone in human intestinal Caco-2 cells. Food and Chemical Toxicology, 98. https://doi.org/10.1016/j.fct.2016.11.00310.1016/j.fct.2016.11.00327816555Search in Google Scholar

Ding, J., Yeh, C.-R., Sun, Y., Lin, C., Chou, J., Ou, Z., Chang, C., Qi, J., & Yeh, S. (2018). Estrogen receptor β promotes renal cell carcinoma progression via regulating LncRNA HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene, 37(37), 5037–5053. https://doi.org/10.1038/s41388-018-0175-610.1038/s41388-018-0175-629789714Search in Google Scholar

Gadzała-Kopciuch, R., Cendrowski, K., Cesarz, A., & Kiełbasa Pawełand Buszewski, B. (2011). Determination of zearalenone and its metabolites in endometrial cancer by coupled separation techniques. Analytical and Bioanalytical Chemistry, 401(7), 2069. https://doi.org/10.1007/s00216-011-5206-x10.1007/s00216-011-5206-x317503921750881Search in Google Scholar

Halbin, K., Mobio, T., Baudrimont, I., Serge, M., Dano, S., & Creppy, E. (2005). Comparative study of cyotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology, 213, 56–65. https://doi.org/10.101/j.tox.2005.05.01010.1016/j.tox.2005.05.01016019124Search in Google Scholar

Kamle, M., Mahato, D. K., Devi, S., Lee, K. E., Kang, S. G., & Kumar, P. (2019). Fumonisins: Impact on Agriculture, Food, and Human Health and their Management Strategies. Toxins, 11(6). https://doi.org/10.3390/toxins1106032810.3390/toxins11060328662843931181628Search in Google Scholar

Kozieł, M. J., Kowalska, K., & Piastowska-Ciesielska, A. W. (2021). Nrf2: a main responsive element in cells to mycotoxin-induced toxicity. Archives of Toxicology. https://doi.org/10.1007/s00204-021-02995-410.1007/s00204-021-02995-4Search in Google Scholar

Kuiper-Goodman, T., Scott, P. M., & Watanabe, H. (1987). Risk assessment of the mycotoxin zearalenone. Regulatory Toxicology and Pharmacology, 7(3), 253–306. https://doi.org/https://doi.org/10.1016/0273-2300(87)90037-710.1016/0273-2300(87)90037-7Search in Google Scholar

Lea, T. (2015). Caco-2 cell line. The Impact of Food Bioactives on Health, 103–111.10.1007/978-3-319-16104-4_1029787057Search in Google Scholar

Marin, D. E., Motiu, M., & Taranu, I. (2015). Food Contaminant Zearalenone and Its Metabolites Affect Cytokine Synthesis and Intestinal Epithelial Integrity of Porcine Cells. Toxins, 7(6), 1979–1988. https://doi.org/10.3390/toxins706197910.3390/toxins7061979448868526035492Search in Google Scholar

Marin, D. E., Taranu, I., Burlacu, R., & Tudor, D. S. (2010). Effects of zearalenone and its derivatives on the innate immune response of swine. Toxicon, 56(6), 956–963. https://doi.org/10.1016/J.TOXICON.2010.06.02010.1016/j.toxicon.2010.06.02020615424Search in Google Scholar

Oswald, I. I., Bouhet, S., Marin, D. E., Pinton, P. P., & Taranu, I. (2003). Mycotoxin effects on the pig immune system. Feed Compounder, 09, 16–20. https://hal.inrae.fr/hal-02671003Search in Google Scholar

Pistol, G. C., Braicu, C., Motiu, M., Gras, M. A., Marin, D. E., Stancu, M., Calin, L., Israel-Roming, F., Berindan-Neagoe, I., & Taranu, I. (2015). Zearalenone Mycotoxin Affects Immune Mediators, MAPK Signalling Molecules, Nuclear Receptors and Genome-Wide Gene Expression in Pig Spleen. PLOS ONE, 10(5), e0127503. https://doi.org/10.1371/journal.pone.012750310.1371/journal.pone.0127503444419126011631Search in Google Scholar

Rai, A., Das, M., & Tripathi, A. (2020). Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Critical Reviews in Food Science and Nutrition, 60(16), 2710–2729. https://doi.org/10.1080/10408398.2019.165538810.1080/10408398.2019.165538831446772Search in Google Scholar

Rogowska, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., Złoch, M., Walczak, J., & Buszewski, B. (2019). A study of zearalenone biosorption and metabolisation by prokaryotic and eukaryotic cells. Toxicon, 169, 81–90. https://doi.org/https://doi.org/10.1016/j.toxicon.2019.09.00810.1016/j.toxicon.2019.09.00831493420Search in Google Scholar

Schaut, A., de Saeger, S., Sergent, T., Schneider, Y.-J., Larondelle, Y., Pussemier, L., & van Peteghem, C. (2008). Study of the gastrointestinal biotransformation of zearalenone in a Caco-2 cell culture system with liquid chromatographic methods. Journal of Applied Toxicology, 28(8), 966–973. https://doi.org/https://doi.org/10.1002/jat.136210.1002/jat.136218548745Search in Google Scholar

Seyed Toutounchi, N., Hogenkamp, A., Varasteh, S., van't Land, B., Garssen, J., Kraneveld, A. D., Folkerts, G., & Braber, S. (2019). Fusarium Mycotoxins Disrupt the Barrier and Induce IL-6 Release in a Human Placental Epithelium Cell Line. In Toxins (Vol. 11, Issue 11). https://doi.org/10.3390/toxins1111066510.3390/toxins11110665689142731739567Search in Google Scholar

Ünüsan, N. (2019). Systematic review of mycotoxins in food and feeds in Turkey. Food Control, 97, 1–14. https://doi.org/10.1016/J.FOODCONT. 2018.10.015Search in Google Scholar

Vancamelbeke, M., & Vermeire, S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology, 11(9), 821–834. https://doi.org/10.1080/17474124.2017.134314310.1080/17474124.2017.1343143Search in Google Scholar

Videmann, B., Mazallon, M., Tep, J., & Lecoeur, S. (2008). Metabolism and transfer of the mycotoxin zearalenone in human intestinal Caco-2 cells. Food and Chemical Toxicology, 46(10), 3279–3286. https://doi.org/https://doi.org/10.1016/j.fct.2008.07.01110.1016/j.fct.2008.07.011Search in Google Scholar

Zhou, J., Zhu, L., Chen, J., Wang, W., Zhang, R., Li, Y., Zhang, Q., & Wang, W. (2020). Degradation mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase RmZHD: A QM/MM study. Science of The Total Environment, 709, 135897. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.13589710.1016/j.scitotenv.2019.135897Search in Google Scholar

Braicu, Cornelia, Sonia Selicean, Roxana Cojocneanu-Petric, Raduly Lajos, Ovidiu Balacescu, Ionelia Taranu, Daniela Eliza Marin, Monica Motiu, Ancuta Jurj, Patriciu Achimas-Cadariu, and Ioana Berindan-Neagoe. 2016. “Evaluation of Cellular and Molecular Impact of Zearalenone and Escherichia Coli Co-Exposure on IPEC-1 Cells Using Microarray Technology.” BMC Genomics 17(1):576.10.1186/s12864-016-2830-zSearch in Google Scholar

Cheng, Qun, Shuzhen Jiang, Libo Huang, Yuxi Wang, Weiren Yang, Zaibin Yang, and Jinshan Ge. 2020. “Effects of Zearalenone-Induced Oxidative Stress and Keap1–Nrf2 Signaling Pathway-Related Gene Expression in the Ileum and Mesenteric Lymph Nodes of Post-Weaning Gilts.” Toxicology 429:152337.10.1016/j.tox.2019.152337Search in Google Scholar

Roh, Kyung-Baeg, Hyoyoung Kim, Seungwoo Shin, Young-Soo Kim, Jung-A. Lee, Mi Ok Kim, Eunsun Jung, Jongsung Lee, and Deokhoon Park. 2016. “Anti-Inflammatory Effects of Zea Mays L. Husk Extracts.” BMC Complementary and Alternative Medicine 16(1):298.10.1186/s12906-016-1284-9Search in Google Scholar

Ben Salah-Abbès, Jalila, Hela Belgacem, Khawla Ezzdini, Mosaad A. Abdel-Wahhab, and Samir Abbès. 2020. “Zearalenone Nephrotoxicity: DNA Fragmentation, Apoptotic Gene Expression and Oxidative Stress Protected by Lactobacillus Plantarum MON03.” Toxicon 175:28–35.10.1016/j.toxicon.2019.12.004Search in Google Scholar

So, Mei Yu, ZhiPeng Tian, Yong Shian Phoon, Sha Sha, Michael N. Antoniou, JiangWen Zhang, Rudolf S. S. Wu, and Kian C. Tan-Un. 2014. “Gene Expression Profile and Toxic Effects in Human Bronchial Epithelial Cells Exposed to Zearalenone.” PLOS ONE 9(5):e96404.10.1371/journal.pone.0096404Search in Google Scholar

Yordanova, Juliana, Osvaldo A. Rosso, and Vasil Kolev. 2003. “A Transient Dominance of Theta Event-Related Brain Potential Component Characterizes Stimulus Processing in an Auditory Oddball Task.” Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology 114(3):529—540.10.1016/S1388-2457(02)00415-7Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo